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Abstract

This paper is concerned with conducting univariate multiple imputa-
tion for employee income data that is comprised of continuously dis-
tributed observations, observations that are bounded by consecutive
income brackets, and observations that are missing. A variable with
this mixture of data types is a form of coarsening in the data. An
interval-censored regression imputation procedure is utilised to gener-
ate plausible draws for the bounded and nonresponse subsets of income.
We test the sensitivity of results to mis-specification in the prediction
equations of the imputation algorithm, and we test the stability of
the results as the number of imputations increase from two to five to
twenty. We find that for missing data, imputed draws are very dif-
ferent for respondents who state that they don’t know their income
compared to those who refuse. The upper tail of the income distribu-
tion is most sensitive to mis-specification in the imputation algorithm,
and we discuss how best to conduct multiple imputation to take this
into account. Lastly, stability in parameter estimates of the income
distribution is achieved with as little as two multiple imputations, due
largely to (a) the small fraction of missing data, in combination with
(b) reduced within- and between-imputation components of variance
for imputed draws of the bracketed income subset, a function of the
defined lower and upper bounds of the brackets that restrict the range
of plausibility for imputed draws.
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1 Introduction

Employee income data are often coarsened as a result of questionnaire de-
sign. Statistics South Africa (SSA), for example, generally ask two sequential
employment income questions: an exact income question with a showcard
follow-up (see Daniels, 2012 for further discussion). In public-use datasets,
this results in two income variables: a continuously distributed variable for
exact income responses and a categorical variable for bounded income re-
sponses with separate categories for nonresponse. It is the task of the re-
searcher to then generate a single income variable that effectively deals with
this mixture of data types. Following Heitjan and Rubin (1991), we call a
variable with this mixture of data types “coarse data”.

Coarse income data pose non-trivial implications for researchers con-
cerned with analysing that data. The primary problem that arises from
an inconsistent treatment of this variable is that parameter estimates may
be biased and dependent on the particular researcher’s choice of method
to overcome the problems posed by the instrument’s design and resulting
data structure. This leads to potentially erroneous inferences on important
univariate parameters of the income distribution, including quantiles and
moments.

Multiple imputation is potentially an effective solution for coarse data
problems (Heitjan and Rubin, 1990; Heitjan, 1994). It involves substituting
coarse data values with plausible draws of those values multiple times. Mul-
tiple imputation has been applied to coarse wealth data by Heeringa (1995)
and Heeringa, Little and Raghunathan (2002), and it has been applied to
coarse earnings data by Daniels (2008) and Vermaak (2010). Ardington,
Lam, Leibbrandt and Welch (2006) conducted multiple imputation for total
income. However, because multiple imputation is effectively a simulation-
based technique (Schafer, 1999), it is very dependent on the setup of the
imputation process and can frequently perform sub-optimally for reasons
that may not be easy to isolate. Van Buuren, Boshuizen and Knook (1999),
Royston (2004), White, Wood and Royston (2007) and Graham, Olchowski
and Gilreath (2007) discuss various aspects of the multiple imputation pro-
cess that can affect the reliability of imputed draws and statistical inference,
ranging from covariate selection, the imputation algorithm itself and the
numbers of imputations needed for reliable inference.
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In this paper the imputation algorithm is simplified by imputing uni-
variately for coarse income data only, rather than also imputing covariate
missing data. This has both advantages and disadvantages. The main dis-
advantage is that it removes all units with covariate nonresponse from the
estimation sample, which is equivalent to treating covariate nonresponse as
missing completely at random (MCAR). The cost of doing this is dependent
on the application, however, with Allison (2000) noting that more sophisti-
cated treatments of covariate nonresponse can impose equally stringent (but
often more opaque) assumptions on the data. However, a distinct advantage
of multiple imputation is that imputed draws can be made for many vari-
ables with missing data simultaneously, making it computationally efficient.
There is, therefore, a definite trade-off in ignoring covariate nonresponse.

The main advantage of imputing multiple times for a single variable is
that it allows us to be far more precise about exactly which aspects of the
multiple imputation algorithm lead to implausible results. The two primary
dimensions of the imputation algorithm that will be explored are specifica-
tion of the prediction equations and sensitivity of the results to the number
of imputations. The reason we need this precision is because Daniels (2012)
showed that respondents who chose to answer the bounded income question
generally were higher income individuals. However, when we accounted for
predictors of higher incomes in the sequential response propensity models, it
was revealed that the final nonresponse subset had refusals that were largely
indistinguishable from don’t know responses on observable covariates. It was
this finding that led to the suggestion that final nonresponse was likely an
ignorable form of nonresponse.

A key objective post-imputation is then to assess where in the income
distribution the bounded, refuse, don’t know and unspecified subsets of the
employment income question lie. The coarse data framework allows us to
characterise the nature of the problem in a theoretically sound manner. The
simplified univariate multiple imputation algorithm then allows us to test the
sensitivity of inferences to covariate selection and the number of imputations.
The usefulness of doing this is that we learn how robust imputations are to
mis-specification. Lessons learnt from this process can then feed into more
complex multivariate missing multiple imputation exercises.

In order to examine the performance of the imputation algorithm, we
test four different specifications of the prediction equations: one that is com-
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pletely mis-specified to establish a baseline of how wrong the imputed draws
can be; one with covariates selected identically to the response propensity
models of Daniels (2012); one with Mincerian earnings function based co-
variates; and one with a combination of response propensity and Mincerian
earnings function covariates, which we treat as the first-best specification
method for reasons discussed below.

Data for this exercise includes the October Household Surveys (OHS,
1997-1999) and Labour Force Surveys (LFS, 2000-2003 September Waves
only). The sample is restricted to economically active (16-64 year old) em-
ployees only.

2 Preliminaries

2.1 Coarse Income Data

A variable with continuous, bounded and missing observations is not simply
an example of nonresponse, but in fact a more complicated problem known
in the literature as “coarse data”. The theory of coarse data stems in part
from the theory of missing data, which was principally developed by Rubin
(1976, 1987). However, “coarse data” is in fact a generalisation of the various
ways that data may not reflect their true values, and includes as special cases
rounded, heaped, censored, partially categorised and missing (i.e. completely
coarse) data (Heitjan and Rubin, 1991).

Two principal papers established the theory of coarse data: Heitjan and
Rubin (1991) and Heitjan (1994). To show the direct precedents to missing
data theory, it is useful to note that the theory of coarse data generalised
Rubin’s (1976, 1987) theoretical phraseology–an association partially man-
dated by the result that missing data was simply one form of coarsening.
As a consequence, the concepts of missing completely at random” (MCAR),
“missing at random” (MAR), and “not missing at random” (NMAR) were dis-
tinguished from “coarsened completely at random” (CCAR) and “coarsened
at random” (CAR). Heitjan and Basu (1996) explicitly differentiate between
these five concepts, but the epistemological extensions provided by coarse
data theory are particularly useful to income in public-use micro datasets.

For the purposes of this discussion, coarse data is defined to consist
of a combination of continuous data (assumed not to be coarsened at all),
bounded data (bracket responses), and item missing data. We formally de-
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fine what this means for the univariate statistical distribution of income,
commencing with the missing data framework and then incorporating the
more general coarse data framework.

Following Little and Rubin (2002, 12), we define the complete data ma-
trix as Y = (yij) and the missing data indicator matrix M = (Mij). Y is
differentiated into an observed and unobserved component, Yobs and Ymis.
The distribution f(·) of missingness is conditional upon Y and unknown
parameters φ, denoted f(M |Y, φ). If f(M |Y, φ) = f(M |φ) ∀ Y, φ, the unob-
served data are said to be Missing Completely at Random (MCAR). Here,
missing data do not depend on the observed or unobserved components of
the complete data matrix. If f(M |Y, φ) = f(M |Yobs, φ) ∀ Ymis, φ, the un-
observed data are said to be Missing at Random (MAR), a more restrictive
condition than MCAR because now the missing data depend on the observed
data. If the missing data M depend on the missing values in the data ma-
trix, the mechanism is called not missing at random (NMAR). The missing
data mechanism is said to be “ignorable” if the unobserved data are thought
to be MCAR or MAR; in this case, a separate model for the mechanism
that causes non-response is not needed (i.e. can be ignored). The missing
mechanism is said to be “non-ignorable” if the unobserved data are NMAR.

The coarse data framework incorporates missing data as a type of coars-
ening, but is also generalisable to bounded data such as income reported in
brackets. To see the extensions, we again rely on Little and Rubin’s (2002,
127-129) formulation of the problem. Let Y be the complete data matrix
in the absence of coarsening with sample space Ψ, and let f(Y |φ) denote
the density of Y for the complete data with unknown parameters φ. The
observed data are now thought to consist of a subset of the sample space Ψ

in which Y is known to fall. This subset is a function of Y and a coarsening
variable G that determines the bounds of Yobs, so that Yobs = Yobs(Y,G).

To see the extension to bracketed responses such as those present in in-
come microdata, note that the characterisation of Yobs = Yobs(Y,G) assumes
that the observed data fall within known upper and lower bounds and not
outside these bounds. Since the bounds are assumed known, the coarse data
framework is flexible enough to be applied not only to bracketed response
types, but also to data that is thought to be imprecisely coarsened, such
as rounded data, heaped data, or otherwise partially categorised data (see
Heitjan and Rubin, 1991). In each case the coarsening mechanism needs to
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be precisely modelled.
To incorporate missing data into this framework, call the unobserved

data completely coarsened, and allow plausible values of that data to lie
within the sample space Ψ of Y . In this case, G is simply the missing data
indicator matrix. Thus:

yobs,ij =

{
{yij} , the set consisting of the single true value, if Gij = 0

Ψ, the sample space of Y, if Gij = 1

(1)
From this, the data Yobs are called coarsened at random (CAR) if

f(g|yobs, ymis, φ) = f(g|yobs, φ) for all ymis.
To apply the framework to a mixture of continuous responses, bounded

responses and missing data, we follow Heeringa’s (1995) example and simply
allow G to precisely define whether the data are observed as continuous,
bracketed or missing. To make the framework specific to the income question
in the OHS and LFS, we will characterise the coarsening process to match
what is found in the public-use datasets.

yobs,ij =


{yij} , if Gij = {0}

[yL ≤ yij < yU ) , if Gij = {1, 2, ..., 14}
Ψ, if Gij = {15, 16, 17}

(2)

Here, Gij = {0} indicates that yij is observed as a set consisting of the
single true (exact) income value; Gij = {1, 2, ..., 14} indicates that yij falls
within the lower bound yL and upper bound yU of one of the fourteen possible
brackets in the OHS and LFS income questions; and Gij = {15, 16, 17}
indicates that yij is observed as “Don’t Know”, “Refuse” or “Unspecified”,
and would then fall within the sample space of Y .

A key implication of the coarse data framework is that the variable G it-
self is measurement error free (Heitjan and Rubin, 1991; Wittenberg, 2008).
This effectively implies that if a respondent reports their income to be within
a given bracket, it cannot lie outside of those bounds. It also implies that if
a respondent provides an exact income response, that response is assumed
to be precisely reported. One of the implications of this relates to the impu-
tation process for it implies that plausible draws of income for the bracketed
subset of observations have to lie within the lower and upper bounds of those
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brackets, while draws for the missing data can be made over the sample space
of income.

2.1.1 The Special Case of Unspecified Responses in the Coarse
Data Framework

In Statistics SA’s household surveys between 1997 and 2003, nonresponse
to the employee income question was often recorded in the public-use data
as an unspecified response. This response type exists even when there are
options for don’t know and refuse in the questionnaires. In 1999, the don’t
know option was introduced to the question for the first time, before both
don’t know and refuse options were added in 2000. Despite this, in each
of the LFS, unspecified responses still exist for the subsample of employed
economically active individuals. This represents a form of either processing
or measurement error because don’t know and refuse exhaust the possible
nonresponse types in the income instrument.

Because of this, the nature of the coarsening mechanism for unspecified
responses is opaque. Unspecified responses in the OHS 1997 and 1998 are the
only identifiable form of nonresponse because the income question does not
present any options to the interviewer for recording a don’t know or refuse
response. Therefore, we are forced to treat those as nonresponse. In 1999,
the unspecified responses are confounded with refuse responses. But in the
LFS, unspecified responses are identifiable as a form of processing error.

Observations that are deemed to be a result of processing error cannot
simply be included in the coarse data framework as applied here, for it
represents a mutually exclusive error mechanism in the data. We deal with
this below by firstly exploring the extent of processing error in the data and
then conducting independent multiple imputations for these observations.

2.1.2 The Special Case of Zero Income Brackets

An idiosyncratic feature of the bounded income question in all of the surveys
analysed (OHS97-LFS03) is that it has a zero income option in the show-
card. The existence of zero income brackets is thought to be related to false
income reporting by Vermaak (2010), who imputes a proportion of these re-
sponses based on an assessment of the share that seem plausibly zero. The
coarse data framework does not allow measurement error in the coarsening
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process to exist. Therefore, simply imputing the zero responses without a
theoretical basis for doing so is arbitrary. Vermaak (2010) seems to include
the self-employed in her subsamples of economically active individuals, which
increases the number of zero responses substantially. This is easy to do in
the LFS because the same question is asked to both the employed and the
self-employed, whereas in the OHS the income question was different for self
employed individuals. We restrict the sample here to employees only in all
survey years.

Zero income values can exist as a valid response type for the subsample
of economically active employees because respondents can be off work on
unpaid leave. We evaluate the prevalence of zeros income responses below,
but keep all such observations in the data without imputing them.

2.2 Multiple Imputation

Multiple imputation has gained recognition as one of the most effective meth-
ods for handling multivariate item nonresponse in public-use datasets. How-
ever, its use requires a clear understanding of its limitations. The coarse data
framework is very useful for characterising the possible ways in which ob-
served data may differ from their true values, and while it incorporates miss-
ing data as a type of coarsening, its extension to other data problems such
as measurement error is limited on theoretical grounds. Recent advances in
multiple imputation theory do indeed pose solutions to data measured with
error (see, particularly, Ghosh-Dastidar and Shafer, 2003), but associated
with this is (1) a necessary change in the operation of imputation algorithms
and, (2) a modification of the combination rules required for valid statistical
inference from multiply imputed datasets (Reiter and Raghunathan, 2007).

Multiple imputation has to address the pattern of coarsening present in
a dataset. It was traditionally envisaged as a tool for data base constructors
whose use of the methods was assumed to be independent from the data
analyst’s (Rubin, 1996). However, as the algorithms became more widely
available and as more researchers became familiar with the methods, its use
has burgeoned across the social and life sciences to a vast array of different
applications. Indiscriminate use of multiple imputation is clearly discouraged
by the major proponents of the method. As Schafer (1999) points out, mul-
tiple imputation is neither the only principled method for handling missing
values, nor is it necessarily the best. Indeed, “(f)rom a statistical standpoint,
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... a naive or unprincipled imputation method may create more problems
than it solves, distorting estimates, standard errors and hypothesis tests...”
(Schafer, 1999, 3). This view echoes Rubin’s (1996: 475), who reminds all
that the “actual objective (of multiple imputation) is valid statistical infer-
ence not optimal point prediction under some loss function, and replacing
the former with the latter can lead one badly astray”.

One of the important implications of the coarse data framework discussed
in subsection 2.1, and directly implied by equation [2], is that the type of
coarsening is defined to be precise; in other words, there can be no mea-
surement error in the coarsening variable (G). The use of the coarse data
framework thus places particular restrictions on the manner in which mul-
tiple imputation can be conducted. Its utility lies in the the fact that it
provides clear rules for multiple imputation for the data structure resulting
from the income question in the surveys considered.

There are examples in the literature of multiple imputation being used
to deal with other forms of survey error. In particular, Ghosh-Dastidar and
Shafer (2003) demonstrate how multiple imputation theory can be extended
to the case of nonresponse and measurement error (without a validation
study). They call their process multiple edit multiple imputation (MEMI),
and note that producing MEMI’s require assumptions about the distribution
of the ideal data, the nature of nonresponse, and a model for the measure-
ment error mechanism. This approach can also be adapted to suit other uses
of multiple imputation, such as anonymising confidential survey information
(ibid, 2003). However, in each case both the imputation algorithms and the
rules for estimation and inference from the multiply imputed datasets differ,
and have to be derived for the intended application.

3 Setup of the Problem

In this section we firstly discuss the data preparation tasks needed before
working with the employee income variables. Here, the existence of bounded
zero responses and processing error will be evaluated. We then develop
an appropriate multiple imputation algorithm for coarse income data and
identify the rules for estimation and inference given the nature of the coarse
data problem and the imputation process.
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3.1 Data Preparation

3.1.1 Zero Income Responses

Since the subsample of interest is economically active employees, zero in-
come responses ought not to exist in general, unless the person is off work
temporarily and on unpaid leave. However, in each survey year, there are a
positive number of zero responses in the OHS and LFS. Moreover, the ma-
jority of zero responses are reported in the bounded income question in the
OHS and LFS questionnaires, rather than the exact income question. Table
1 presents the number of observations reported in each response type.

Table 1: Distribution of Response Types: OHS97 - LFS03

Response Type 1997 1998 1999 2000 2001 2002 2003
Exact Obs 16 185 7 637 11 735 18 739 15 945 14 469 13 759

Percent 67.76 58.81 53.52 87.34 75.25 70.55 68.26
Exact-Zero Obs 1 . . 6 3 . .

Percent 0.00 . . 0.03 0.01 . .
Bounded Obs 6 713 4 718 8 028 1 997 4 044 4 650 4 964

Percent 28.10 36.33 36.61 9.31 19.09 22.67 24.63
Bounded-Zero Obs 45 2 27 36 21 34 34

Percent 0.19 0.02 0.12 0.17 0.10 0.17 0.17
Don’t Know Obs . . 1 588 72 521 651 485

Percent . . 7.24 0.34 2.46 3.17 2.41
Refuse Obs . . . 144 578 664 891

Percent . . . 0.67 2.73 3.24 4.42
Unspecified Obs 942 628 548 461 77 40 23

Percent 3.94 4.84 2.50 2.15 0.36 0.20 0.11

Evident from the table is that the number of zero responses is usually
very small, ranging from two in 1998 to forty-five in 1997. Most of these are
reported in the bounded income question.

Of those employees who reported a zero income response (either in the
bounded question or the exact question), the percentage that also reported
that they have been absent from work in the past week due to illness ranges
from zero in 1997-1999 to 29 percent in 2000, 42 percent in 2001, 53 percent
in 2002 and 24 percent in 2003. There is no question for whether individuals
are on unpaid leave for other reasons, however, so we cannot investigate this
phenomenon. Because there are legitimate reasons for zero income reporting,
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we keep all zero responses in the subsamples of employees for each survey
year and do not impute any of them.

3.1.2 Processing Error and/or Measurement Error in the Data

Two anomalies exist in Statistics SA’s OHS and LFS: (1) instances where
both an actual and a bracketed value are observed for the same individual;
and (2) observations that are coded as “Unspecified” (i.e. missing), when in
fact response options already exist in the questionnaire for the respondent
to reply that they “Don’t Know” or “Refuse” to answer the question. It is
impossible to tell from the data or the survey documentation whether these
anomalies are by design or whether they constitute a form of processing or
measurement error, but they need to be addressed before imputation can
taken place.

To formalise the problem, consider that the universe of potential out-
comes for income responses consists of a continuous (exact) income subset,
a bounded subset, and a missing (don’t know, refuse or unspecified) subset.
These three subsets are mutually exclusive because a bracketed outcome
is only observed if the respondent chose not to answer the actual income
prompt from the interviewer. A missing outcome is only observed if the
respondent chose not to answer both the actual and the bracketed response
prompt.

Let the event that an exact income response is reported by the respondent
be denoted P (A), the event that a bounded response is reported be denoted
P (B), and the event that a missing response be reported be denoted P (M).
For these three events to be mutually exclusive, P (A ∪ B ∪M) = P (A) +

P (B) + P (M) = 1, and P (A ∩ B ∩M) = 0; P (A ∩ B) = 0; P (A ∩M) =

0; P (B ∩M) = 0. A first form of (either processing or measurement) error
can then be defined to exist if any of these outcomes are violated.

Because the design of the income question evolved between the OHS 1997
- LFS 2000, P (M) is not defined by don’t know and refuse for every survey
year. We therefore need to decompose P (M) into its observable parts: don’t
know responses (denoted P (D)), refusals (denoted P (R)), and unspecified
responses (denoted P (U)). Across the survey years we will then observe
missing responses as:

• P (M) = P (U) for OHS 1997 and 1998;
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• P (M) = P (U) + P (D) for OHS 1999;

• P (M) = P (D) + P (R) for LFS 2000-2003.

A second form of error can be defined to exist only for the LFS if P (M) =

P (D) + P (R) + P (U), where P (U) 6= 0. This is because don’t know and
refuse responses in the LFS complete the possible forms of nonresponse for
the employed, economically active population. In the OHS 1999, unspecified
responses cannot be identified as a form of error because those responses
confound refusals in the same way that unspecified responses confounded
both don’t know and refusals in the OHS 1997 and 1998.

Table 2 presents the extent of these errors in the OHS97-LFS 2003. In
order to estimate the subsets correctly, we use the raw data from the surveys
of interest before any transformations of the variables are made.

Table 2: Subsets of Interest in the Observed Income Data

Income Response Subsets 1997 1998 1999 2000
N (employed EAP) 23 886 12 985 21 926 21 455
(1) Exact Responses: P(A) 0.6779 0.5881 0.5352 0.8737
(2) Bounded Responses: P(B) 1.0000 0.4888 0.8981 0.0951
(3) Nonresponse: P(M) 0.0000 0.0000 0.0724 0.0101
(4) Complement: (A ∪B ∪M){ 0.0000 0.0484 0.0250 0.0215
Sum: (1) + (2) + (3) + (4) 1.6779 1.1253 1.5307 1.0003
P (A ∩B) 0.6779 0.1253 0.5307 0.0003
P (A ∩M) 0.0000 0.0000 0.0000 0.0000
P (B ∩M) 0.0000 0.0000 0.0000 0.0000
Income Response Subsets 2000 2001 2002 2003
N (employed EAP) 21 455 21 189 20 508 20 156
(5) Exact Responses: P(A) 0.8737 0.7527 0.7055 0.6826
(6) Bounded Responses: P(B) 0.0951 0.1918 0.2284 0.2480
(7) Nonresponse: P(M) 0.0101 0.0519 0.0641 0.0683
(8) Complement: (A ∪B ∪M){ 0.0215 0.0036 0.0020 0.0011
Sum: (5) + (6) + (7) + (8) 1.0003 1.0000 1.0000 1.0000
P (A ∩B) 0.0003 0.0000 0.0000 0.0000
P (A ∩M) 0.0000 0.0000 0.0000 0.0000
P (B ∩M) 0.0000 0.0000 0.0000 0.0000

In the table, the column for 2000 is repeated for presentation purposes only,
simply to show (1) how the transition from the OHS to the LFS proceeded,
and (2) how all of the LFSs compare.
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We can see from the table that the sum of the probabilities do not always
add up to one; this is the first clue that something is amiss. The first form
of error exists for the OHS97-LFS00, but only for the subset P (A ∩ B).
That is, we sometimes jointly observe values for exact and bounded income
for the same respondents in these public-use datasets, which should not be
happening.

The findings for 1997 and 1999 are noteworthy because of the magnitude
of the error in the data, at 68 and 53 percent, respectively (obtained from the
“Sum” row in the table). For both years, these numbers match the percentage
of actual income observations in the survey. This suggests that for each exact
income observation, there is also a bounded observation. It is unclear why
this is the case, or what motivation Statistics SA could possibly have had in
doing this. One potential reason is that it is not a form of error at all, but
rather that the survey organisation intentionally did this for some reason (it
was not apparent from a reading of the survey organisation’s accompanying
literature and metadata whether or why this was done).

In order to investigate this further, we checked the consistency between
the exact values that were also observed as brackets by transforming actual
income into a new monthly income variable, and then converting that vari-
able into a bracketed variable with the same bounds as the SSA’s bounded
variable. The result was that about 85 percent in 1997 and 99 percent of ac-
tual income observations in 1999 were in the correct monthly income bracket.
For 1998, only 16 percent of actual income observations were in the correct
bracket. While it is true that the extent of this error is mitigated to some
extent when there is a match between the variables, the existence of two
data points on income for the same person should never, as a rule, exist.

We do not observe this form of error for the other possible subsets, namely
P (A∩M) or P (B ∩M), in any of the datasets. This is unsurprising, for the
actual placement of the “Don’t Know” and “Refuse” options in the public-use
dataset is as an option in the bounded income variable, making it impossible
to confuse these subsets (when they enter the data electronically).

It is clear from the table, though, that SSA really improved their perfor-
mance on this dimension of the problem over time, with this form of error
dropping to zero by the LFSs. That said, the LFS2000–2003 all have non-
zero complements to P (A∪B∪M), which ought to no longer exist given that
the income question had specific response options for don’t know and refuse.
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Consequently, a second form of error exists, and is non-zero in each LFS
dataset. It is substantial in the OHS 1999 and LFS 2000, at approximately
2.5 and 2 percent, respectively, of the sample of employed economically active
individuals.

The first type of error discussed for these datasets can easily be dealt with
by generating a new derived income variable from the combined actual and
interval variables in the raw data, and overwriting the bracketed responses
with the exact responses. The rationale for doing this is that exact responses
are preferred to bounded responses from an information content point of
view (see Schwartz and Paulin, 2000). For the second type of error, we deal
with it differently across the survey years: the observations are kept in the
OHS 1999 because they are confounded with refusals; but they are omitted
for imputation purposes from the LFS, where the nonrespondent subset is
fully defined by don’t know and refusals. However, we will evaluate and
impute these response types separately in the analysis below to examine
their distribution.

3.2 The Imputation Algorithm

There are several important steps required for the development of appropri-
ate multiple imputation methods. These include:

• Correctly characterising the nature of the missing data, called the
“missingness” mechanism. Little and Rubin (2002, 4-8) identify several
such patterns, including univariate nonresponse, multivariate nonre-
sponse (e.g. item nonresponse and unit nonresponse), monotone miss-
ing (e.g. attrition in longitudinal studies), general patterns of missing
data (e.g. item nonresponse on many variables in a single dataset),
file matching missing data problems, and latent-variable patterns with
variables that are never observed. An important relationship exists
between the pattern of missing data and the imputation procedure,
with univariate and monotone missing data patterns allowing for the
simplest imputation algorithms to be implemented (White, Wood and
Royston, 2007).

• Based on the missing mechanism, choosing an appropriate multiple
imputation algorithm. An important requirement of this choice is
ensuring that the imputation method is “proper”, which means that
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it must account for uncertainty in the parameters of the imputation
model (White, Royston and Wood, 2011). This is necessary because
Rubin’s Rules for combining datasets only yield valid standard errors
if the imputations adequately reflect the uncertainty in drawing values
for the missing data.

• Specifying the imputation model: variable selection. As White, Roys-
ton and Wood (2011) point out, covariates for each prediction equation
in the imputation algorithm have to be carefully chosen to help increase
the plausibility of the missing (coarsened) at random assumption. Van
Buuren, Boshuizen and Knook (1999) suggest that variable selection
ought to include:

– Variables that are required in the complete data model of interest;

– Variables that appear to determine missingness;

– Variables that explain a considerable amount of the variance of
the target variable, which helps to reduce the uncertainty of the
imputations.

• Specifying the imputation model: model form. An important concept
in the imputation literature is the idea of a “congenial” imputation
model. White, Royston and Wood (2011) state that instead of aiming
to find the true imputation model, an alternative approach relies on
finding an imputation model that is congenial to the analysis model
but not necessarily correctly specified. In this way, inference on multi-
ply imputed data can approximate maximum likelihood estimates (for
large numbers of imputations) (ibid, 385).

• Choosing sufficiently large numbers of multiple imputations for the
missing data in order to reflect the uncertainty present in the imputa-
tion process. Traditional multiple imputation theory used the oft-cited
rule-of-thumb of five imputations, but more recent studies suggest that
many more multiple imputations may be needed – in the order of one
hundred for certain applications (Graham, Olchowski and Gilreath,
2007).

• Conducting complete-case analysis from multiply imputed data using
the correct combination rules. Depending on the problem under inves-
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tigation, these combination rules may differ to Rubin’s Rules (Reiter
and Raghunathan, 2007).

• Testing the sensitivity of the results. This can be done in different
ways, since each step described above imposes a certain structure on
the imputation process, the sensitivity of which can be investigated.
Carpenter, Kenward, and White (2007) use a weighting approach af-
ter imputation to test the validity of the MAR assumption for each
imputed dataset. However, this requires a specific model for how im-
putations depart from MAR. Sensitivity analysis can also be conducted
using an uncongenial imputation model, which Kenward and Carpen-
ter (2007) suggest. This involves specifying an imputation model that
differs from the analysis model. We incorporate this suggestion into
the analysis below.

It is important to note that in this paper we are concerned with multiply
imputing for coarse income data only, which sets the pattern of coarseness as
univariate. Consequently, we are not interested in multivariate coarsening
or the effect of coarse data on the earnings covariate vector. An impor-
tant consequence of this is that the multiple imputation algorithms simplify
tremendously because the process of drawing plausible values from the con-
ditional distribution of each variable with coarse data is restricted by design
to one conditional distribution – income.

Practically, this means our task is to develop a univariate multiple im-
putation algorithm. This has two implications: (1) it is no longer necessary
to characterise the coarse data mechanism in a multivariate sense (e.g. to
establish whether it is monotonic or a general multivariate coarse data pat-
tern); and (2) it is no longer necessary to use a sequential regression multiple
imputation approach to the problem because there is only one variable with
coarse data1. For this purpose we utilise the interval regression-based mul-

1The two most common sequential imputation algorithms are variants of Van Buuren,
Boshuizen and Knook’s (1999) multiple imputation by chained equations (MICE) algo-
rithm, and Raghunathan, Lepkowski, Van Hoewyk and Solenberger’s (2001) sequential
regression multiple imputation (SRMI) algorithm. Royston’s (2004, 2005, 2007, 2009)
imputation by chained equations (ICE) algorithm is similar in principle to Van Buuren
et al’s (1999) procedure, while Statacorp (2011) developed a flexible multiple imputation
package that can perform monotonic multiple imputation, fully conditional specification
procedures (such as MICE, ICE and SRMI), and explicit Bayesian algorithms that al-
low the user to specify prior and posterior distributions, amongst others. The algorithm
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tiple imputation procedure developed by Royston (2007) and modified by
Statacorp (2011).

3.3 Estimation and Inference from Multiply Imputed Data

Multiple imputation was suggested as a potential solution to missing data
problems by Rubin (1976), and the rules for inference from multiply imputed
datasets came to be known as Rubin’s Rules. These essentially state that
analyses of multiply imputed datasets should be conducted based on stan-
dard complete-data techniques, but parameter estimates must be combined
across datasets.

Formally, Rubin’s Rules are presented as follows (we follow Royston’s
(2004) exposition): Let θ̂m,Wm,m = 1, ...,M be M complete-data estimates
and their associated variances for an estimated parameter θ. The mean of θ
is then calculated as:

θ̄M =
1

M

M∑
m=1

θ̂m. (3)

The variance of θ has both a within component and a between compo-
nent. The within component of the variance is:

W̄M =
1

M

M∑
m=1

Wm. (4)

The between component of variance is:

BM =
1

M − 1

M∑
m=1

(θ̂m − θ̄M )2. (5)

Combining the within and between-components then leads to the formula
for total variance:

TM = W̄M +
M + 1

M
BM , (6)

The reference distribution for confidence intervals and significance tests is a
t distribution,

in Statacorp (2011) also has the functionality to be restricted to the type of univariate
multiple imputation procedure utilised here.
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(θ − θ̄M )T
−1/2
M ∼ tν ,

with degrees of freedom,

ν = (M − 1)

(
1 +

1

M + 1

W̄M

BM

)2

.

In the analysis below, we obtain parameter estimates for the marginal
distribution of post-multiply imputed income using these rules for a variety
of different parameters.

4 Results: Univariate Multiple Imputations for Coarse
Income

In this section we conduct univariate multiple imputation for coarse income
data. Our objective is to draw plausible values for both the bracketed and
missing subsets in each survey year. The multiple imputation algorithm em-
ployed for this purpose is based on an interval regression procedure developed
by Statacorp in Stata Release 12 (2011). The algorithm allows for imputed
draws to be restricted to the income bracket lower and upper bounds, and it
simultaneously allows for imputed draws for missing data to be unrestricted.
The sensitivity of estimates and inferences to a range of different specifica-
tions of the prediction equations of the imputation algorithm is tested. Four
models are developed for this purpose:

1. Model 1: multiply imputing five times with an intentionally mis-specified
covariate vector that includes gender and language as the only predic-
tors. The purpose of doing this is to create a baseline set of imputa-
tions that provide insight into how badly things can go wrong due to
covariate mis-specification.

2. Model 2: multiply imputing five times with prediction equations us-
ing covariates that explain the response process only (see Table 6 on
page 38 for the variables in this model, and Daniels (2012) for a mo-
tivation for the use of this model). The purpose of doing this is to
create an “uncongenial” set of imputations, in the sense that the impu-
tation model differs from the intended analysis model (Kenward and
Carpenter, 2007).
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3. Model 3: Multiply imputing five times for univariate income with Min-
cerian earnings function covariates only. These include age and experi-
ence (including their squares), other personal characteristics variables
(including race and gender, but not language), hours worked, occupa-
tion, trade union membership, industry, and province. The purpose of
this model is to create a set of imputations that would be “congenial”
to analysing earnings, even though variables that explain the response
process are largely absent.

4. Model 4: multiply imputing five times using both Mincerian earnings
equation covariates and response propensity covariates. On a-priori
grounds, this algorithm is treated as first-best because it conforms to
the recommendations of Van Buuren et al (1999, see section 3.2 for
discussion).

4.1 Quantiles and Moments Across Four Imputation Models

The results for weighted univariate income parameter estimates for each
imputation model are presented in Table 3. The table shows parameter
estimates of the multiply imputed nominal employment income variables
(“Yimp”), for each of the four imputation models discussed above and the
estimation sample size (“Est.N”) in each survey year. Quantile estimates are
calculated post-imputation for each of m imputed income variables using
Rubin’s Rules (see equation [3] above). For this section, the variance of the
estimates are omitted, but they will be evaluated in detail below in section
4.62.

2Note that the variance of a quantile has to be computed manually after m multiple
imputations using Rubin’s Rules (see equations [4] to [6] above). The total variance of
a quantile contains only a between-imputation component of variance (see equation [5]
above), but Rubin’s total variance formula in equation [6] still has to be used to calculate
the variance of a quantile because of the (m+ 1)/m adjustment for finite m.
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Table 3: Quantiles of Four Different Models for Imputed Income

Year Variable min p5 p10 p25 p50 mean p75 p90 p95 p99 max Est.N
1997 Yimp-model1 0 211 350 863 1 796 4 054 4 000 8 705 14 512 37 724 307 832 23 868

Yimp-model2 0 204 350 804 1 700 3 688 3 665 7 871 12 918 33 526 202 582 23 303
Yimp-model3 0 206 350 803 1 709 3 433 3 660 7 548 12 028 27 451 177 681 23 206
Yimp-model4 0 201 348 800 1 656 3 287 3 516 7 278 11 457 26 572 127 069 22 805

1998 Yimp-model1 0 206 304 800 1 951 5 600 4 980 12 213 21 397 61 051 511 400 12 985
Yimp-model2 0 201 300 772 1 809 5 210 4 673 11 532 19 980 54 850 598 968 12 574
Yimp-model3 0 200 300 681 1 608 3 910 3 971 8 836 14 488 35 832 370 000 11 619
Yimp-model4 0 200 300 652 1 586 3 756 3 803 8 270 13 741 33 601 370 000 11 356

1999 Yimp-model1 0 216 337 785 2 000 7 549 5 869 15 441 28 147 88 298 1 559 224 21 915
Yimp-model2 0 213 311 700 1 757 6 376 4 970 13 008 23 760 72 413 1 522 138 20 365
Yimp-model3 0 216 312 700 1 796 6 041 5 014 12 879 22 483 61 965 1 522 138 20 575
Yimp-model4 0 200 300 678 1 702 5 697 4 738 12 137 21 297 56 636 1 522 138 19 562

2000 Yimp-model1 0 217 318 665 1 521 5 890 3 500 7 037 11 146 27 474 4 726 242 20 993
Yimp-model2 0 217 304 652 1 500 5 824 3 486 6 965 10 934 25 572 4 726 242 20 734
Yimp-model3 0 217 305 652 1 500 5 804 3 500 7 000 10 921 24 686 4 726 242 20 725
Yimp-model4 0 216 300 652 1 500 5 678 3 358 6 611 10 157 23 446 4 726 242 20 538

2001 Yimp-model1 0 250 350 748 1 800 4 120 4 383 8 999 14 894 37 827 500 000 21 112
Yimp-model2 0 248 350 700 1 738 3 751 4 000 8 161 13 277 32 644 500 000 20 486
Yimp-model3 0 250 350 702 1 738 3 681 4 000 8 098 12 934 30 953 500 000 20 599
Yimp-model4 0 242 350 700 1 700 3 471 4 000 7 855 11 972 28 095 500 000 20 156

2002 Yimp-model1 0 250 350 763 1 919 5 399 5 012 11 827 20 190 55 296 500 797 20 467
Yimp-model2 0 250 350 737 1 800 4 896 4 957 11 010 19 021 45 871 396 532 19 834
Yimp-model3 0 250 350 750 1 842 4 448 4 844 10 159 16 738 38 143 380 000 19 994
Yimp-model4 0 250 350 701 1 800 4 122 4 580 9 618 15 558 34 388 380 000 19 549

2003 Yimp-model1 0 300 480 856 2 000 5 925 5 653 13 120 22 415 59 026 726 726 20 130
Yimp-model2 0 300 477 846 2 000 5 300 5 145 12 161 20 446 51 422 321 882 19 599
Yimp-model3 0 300 495 854 2 000 5 048 5 226 11 904 19 330 45 200 240 975 19 805
Yimp-model4 0 300 472 818 2 000 4 697 5 000 11 027 17 980 40 299 212 935 19 359
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Results from the table are discussed thematically. The following issues
are of relevance:

• The difference in parameter estimates across imputation methods.

• The difference in the estimation sample size across imputation meth-
ods.

• The difference in the upper and lower tails of each distribution.

Evident from table 3 is that up until the median, the differences between
the imputations are relatively trivial. This is expected, for we know that
the probability of a bounded responses increases as income increases, so any
difference in imputed draws for this subset will only make its presence felt
higher up the income distribution. That said, an important feature of the
imputation algorithm is that it limits the range of imputed draws to the
bounds of each income category. For the highest income category, however,
this is an open ended interval with no upper bound. Therefore, imputations
for respondents in this group have no upper limit.

At the top of the income distribution, we see substantial differences be-
tween the distributions. At the 99th percentile, the OHS 1999 has the widest
range between the four imputation models. The mis-specified method of
model 1 leads to substantially higher estimates than any other model. The
differences between distributions in model 2 (that has response propensity
covariates) and model 3 (that has earnings function covariates) is also sub-
stantial, but the difference in estimates between model 3 and the first-best
imputation model 4 (which combines response propensity and earnings func-
tion covariates) is much lower.

In fact, in every survey year and for every quantile other than the min-
imum, the first-best imputation model always generates distributions with
the lowest estimates. The importance of this is particularly stark for the
maximum values in each distribution. Important to note here is that in sur-
vey years where an exact income value is extreme, such as in 1999 and 2000,
the imputed values rarely exceed this outlier, except for the mis-specified
imputation model one in 1999, where an imputed draw is larger than the
maximum in that year. But there is nothing generalisable from this observa-
tion, for in 2001 where an exact income value also represents the maximum,
the imputation model one does not exceed it. The relationship between
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outliers in the observed distribution and multiple imputation is therefore
important to be aware of.

The differences between the four imputation models at the maximum are
substantial in 1997, 1998, 2002, and 2003. This suggests that specification of
the imputation algorithm is most significant to the upper tail of the income
distribution. The fact that the model 4 estimates are the lowest for each
parameter across the entire distribution suggests that covariate selection
based on explaining both the outcome variable of interest (income) and the
response process leading to coarse data (response propensities), is crucial
for plausible draws of income, but even more important the highest income
earners.

However, it is not clear that a congenial imputation model that only fo-
cuses on earnings covariates (model three) is substantially worse than model
four. Model two is slightly more volatile across the survey years, suggesting
that choosing covariates that explain the response process alone is not an
optimal way of specifying multiple imputation algorithms. Finally, the reduc-
tion in the estimation sample size for model 4, although relatively modest, is
nevertheless an important limitation associated with increasing the number
of covariates in the prediction equations.

4.2 The Distribution of Multiply Imputed Bounded Income
Values

In this section we compare the subsets of multiply imputed income. We
restrict the analysis initially to the first-best imputation model only. The
kernel densities of the five multiply imputed bounded income distributions
are presented in Figure 1. The density for exact income responses is on the
same graph. The solid lines represent the bounded distributions and the
dashed line the continuous distribution for exact responses.
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Figure 1: Multiply Imputed Bracketed Income Compared to Observed Con-
tinuous Income: 1997-2003
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We can see from figure 1 that the densities of imputed draws for the
bracketed subset are always to the right of the actual income response distri-
bution. This is entirely expected from the analysis in Daniels (2012), where
it was shown that the probability of a bounded income response increases as
income increases.

The densities for each of the five imputed draws are very similar, and
generally have similar skewness and kurtosis. This is to be expected given
the bounds of the brackets, which restrict where in the distribution the draws
can be made. An important observation concerns the maxima of the imputed
draws for the bracketed subset of income respondents. In 1997 and 2003 we
see clearly that the maximum monthly income value in the data is generated
by the imputed draws for bounded income.

It is also apparent that the minimum income values are determined by re-
spondents who answer the bracketed section of each questionnaire. It should
be remembered that the lowest bracket in each questionnaire is zero. And
in each survey year we observe a non-zero count of such responses. This is
highest in 2000, but is also noticeable in 1997, 2001-2003, where it clearly af-
fects the kernel densities. The existence of zero values for employee income is
not unreasonable given the fact that the income question asks respondents
about their labour market activities in the week preceding the interview,
during which respondents could be earning no income.

4.3 The Distribution of Multiply Imputed Missing Income
Values

The kernel densities of multiply imputed draws for the nonresponse subset
(combining unspecifieds, don’t know and refusals as appropriate to the survey
year) of observations are compared to the observed responses (bounded and
continuous) in figure 2. As before, each of the five multiply imputed income
distributions are plotted on the same graph for each year. The densities
for imputed draws of missing income observations are the solid lines while
observed income has dashed lines.
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Figure 2: Multiply Imputed Missing Income Compared to Observed (Multi-
ply Imputed Bracket & Continuous) Income: 1997-2003
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We can see from this figure that the distribution of imputed missing val-
ues changes over time, relative to the distribution of observed responses. In
1997 the densities for the missing income respondents generally overlaps that
of the observed respondents. This suggests that respondents who didn’t an-
swer the income question had similar predicted values of income compared
to respondents who did provide an answer to the question, based on observ-
ables in the public-use dataset. That begins to change immediately after
1997, however, where in 1998 it becomes clear that the missing subset of
respondents had predicted income values discernibly more to the right than
the observed subsets of income respondents.

The location of the densities for the missing subset of observations gradu-
ally moves further to the right over time. To explain this trend, it is notewor-
thy to remember that we are observing the nominal distribution of monthly
income over time. It is therefore reasonable to expect that the distribution of
income in the population itself would shift to the right over the time frame.

4.4 The Distribution of Multiply Imputed Refusals and Don’t
Know Income Values

In this section we evaluate the distributions of multiply imputed refusals and
don’t know income values. The time frame is restricted to 2000 and beyond,
since these response options only appear in the questionnaires from 2000
onwards. The kernel densities for the multiply imputed draws of refusals are
plotted with a solid line while draws for don’t know responses are plotted with
dashed lines. Because imputed draws for refusals and don’t know responses
are of particular interest, we compare the four multiple imputation models
against each other. In figure 3, the mis-specified imputation method (model
1) is on the left hand side while the first-best imputation method (model 4)
is on the right hand side.

It is evident from figure 3 that there is now a lot more variation between
the imputed draws for each response group, and there are very different infer-
ences about the distribution of don’t know and refuse responses depending on
which multiple imputation method is used. According to model one, the two
groups are nearly indistinguishable, whereas in model four they are always
very different. The densities of imputed income draws for refusals always lie
to the right of the don’t know responses. This shows a clear advantage of
correctly specifying multiple imputation algorithms.
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Figure 3: Multiply Imputed Missing Income: Refusals Compared to Don’t
Know: 2000-2003
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Figure 4: Refusals Compared to Don’t Know: Response Propensity (Model
2) and Earnings Function (Model 3) Imputations: 2000-2003
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To evaluate the sensitivity of this finding, we now compare the results for
multiple imputation models 2 and 3 against each other. Figure 4 presents
the densities where refuse responses are the solid lines while don’t know
responses are the dashed lines.

We can see from figure 4 that regardless of whether the multiple im-
putation algorithm is specified with response propensity covariates only, or
whether it is specified with earnings function covariates, the imputed draws
for don’t know and refuse subsets of the income distribution show very dif-
ferent distributions. The fact that both models predict this difference is
unsurprising because some of the response propensity covariates were chosen
precisely because they’re correlated with income.

4.5 Unspecified Responses as a Source of Error

In this section we isolate two survey years where unspecified responses rep-
resent a significant source of error, namely 1999 and 2000. Unspecified re-
sponses in 1999 are confounded with refusals; they consequently enter into
the multiple imputations models discussed above. However, in 2000 unspeci-
fied responses represent a source of error only because don’t know and refuse
responses complete the nonresponse possibilities. Therefore, these responses
are not imputed in models 1 through 4 above. However, in this section we
conduct a new multiple imputation exercise for the LFS 2000 that is identi-
cal to model 4 above, but that does multiply impute values for unspecified
responses. We then evaluate the densities of these unspecified responses
compared to the other nonresponse subsets.

Table 1 on page 10 presents the subsample sizes for unspecified responses.
We now want to compare the multiply imputed draws for these responses
against the imputed draws for don’t know responses in 1999, and against
both don’t knows and refusals in 2000. Figure 5 presents the results. In
1999, the densities for unspecified income draws are the dashed lines, while
the solid lines represent don’t know responses. In 2000, the densities for
unspecified income draws are the bold dashed lines, whereas refusals are the
solid lines and don’t know the narrower dashed lines.
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Figure 5: Unspecified Response Error Imputations: 1999 and 2000
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From figure 5 it is clear that unspecified responses are substantially dif-
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ferent to identified nonresponse groups in both 1999 and 2000. In 1999, if
the unspecified responses were only refusals, then we would expect the dis-
tribution of these responses to lie to the right of the imputed don’t know
densities, as they do for every survey year in figures 3 and 4. However, they
are much more widely spread across the income distribution than refusals.

The same is true in 2000, when there is no longer confounding with
refusals. Here, the densities for the imputed unspecified responses are spread
across a much larger range than either the don’t know or refuse imputations.
This suggests that processing error is a completely different error mechanism
to nonresponse on the income question, and should consequently not enter
multiple imputation algorithms that do not explicitly account for the very
different properties of this component of error.

4.6 Stability of Parameter Estimates as the Number of Mul-
tiple Imputations Increase

The final section of this paper evaluates the stability of parameter estimates
of imputed income as the number of imputations increase from two to five to
twenty. We conduct multiple imputations using the specification of model 4
only. A-priori, we know that there is not much variation in imputed draws
below the median of monthly income from previous analysis (see Table 3 on
page 20). However, above this level there is more scope for variation. In par-
ticular, the largest (open-ended) income bracket as well as the distribution
for imputed refusals and don’t know responses should be considered to be
highly variable given the analysis above. We therefore need to establish the
bounds of sensitivity due to the number of multiple imputations conducted.
Tables 4 and 5 present the results of this exercise.
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Table 4: Quantile Estimates of Imputed Income as Number of Imputations Increase

Yr & # Imps p10 p25 p50 mean p75 p90 p95 p99 max wgt.sum Est.N
97 m=2 348 800 1 652 3 291 3 550 7 285 11 487 26 409 124 035 25 097 196 736 22 805
97 m=5 348 800 1 656 3 287 3 516 7 278 11 457 26 572 127 069 25 067 172 581 22 805
97 m=20 348 800 1 661 3 310 3 523 7 271 11 493 26 856 157 552 25 241 903 829 22 805
98 m=2 300 652 1 586 3 766 3 834 8 394 13 808 32 589 370 000 22 605 113 545 11 356
98 m=5 300 652 1 586 3 756 3 803 8 270 13 741 33 601 370 000 22 547 061 243 11 356
98 m=20 300 652 1 592 3 809 3 826 8 435 13 990 34 417 370 000 22 864 444 500 11 356
99 m=2 300 674 1 704 5 651 4 712 11 998 20 982 57 871 1 522 138 43 505 765 737 19 562
99 m=5 300 678 1 702 5 697 4 738 12 137 21 297 56 636 1 522 138 43 867 855 872 19 562
99 m=20 300 674 1 702 5 650 4 703 12 084 21 026 55 297 1 522 138 43 499 371 526 19 562
00 m=2 300 652 1 500 5 683 3 350 6 654 10 076 22 779 4 726 242 50 081 776 261 20 538
00 m=5 300 652 1 500 5 678 3 358 6 611 10 157 23 446 4 726 242 50 044 395 951 20 538
00 m=20 300 652 1 500 5 686 3 349 6 635 10 103 23 158 4 726 242 50 112 869 667 20 538
01 m=2 350 700 1 700 3 481 4 000 7 936 12 086 27 635 500 000 28 759 747 602 20 156
01 m=5 350 700 1 700 3 471 4 000 7 855 11 972 28 095 500 000 28 683 413 421 20 156
01 m=20 350 700 1 704 3 489 4 000 7 951 12 019 28 640 500 000 28 826 536 243 20 156
02 m=2 350 700 1 800 4 161 4 591 9 837 15 897 34 629 380 000 35 123 620 901 19 549
02 m=5 350 701 1 800 4 122 4 580 9 618 15 558 34 388 380 000 34 800 753 362 19 549
02 m=20 350 704 1 800 4 153 4 582 9 662 15 494 34 306 380 000 35 060 187 137 19 549
03 m=2 471 828 2 000 4 685 5 000 11 119 18 175 39 574 145 035 42 606 474 187 19 359
03 m=5 472 818 2 000 4 697 5 000 11 027 17 980 40 299 212 935 42 717 106 246 19 359
03 m=20 470 813 2 000 4 732 5 001 11 215 18 300 40 466 225 885 43 033 850 802 19 359
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Parameter estimates in Table 4 are calculated as the mean of the two, five
and twenty multiply imputed monthly income variables in the each respective
datasets, as per equation 3 of Rubin’s Rules. Evident from the table is that
quantile estimates are almost identical below the median. For the mean of
monthly income, the estimates are also very close across the two, five and
twenty imputations for each survey year. In fact, this observation holds for
every quantile including the maximum in every survey year. Even when we
sum up all of the observations for monthly income to create a population-
based estimate of the total monthly income earned by employees in South
Africa, we can see that estimates do not differ substantially.

The coefficient of variation of these estimates is presented in table 5.
Given that the means of parameter estimates are stable over two, five and
twenty imputations–as presented in table 4–the coefficient of variation is
informative about the magnitude of the inflation in the variance observed as
the number of imputations increase.

We can see from the table that the ratio of the standard deviation to
the mean is very small across every quantile and moment as the number of
imputations increase. The largest values for the coefficient of variation are
all found in the maximum column, for the survey years 1997 and 2003. Even
here though, the numbers are less than 0.5. Aside from these larger values,
every other estimate of the coefficient of variation is always below 0.1.

Despite the small magnitude of these coefficients, an important obser-
vation is the fact that they do not simply reduce in size as the number of
imputations increase. This prevents any strong conclusions about the re-
lationship between the number of imputations and its impact on inference.
Two contributing factors to this finding are that (1) the percentage of miss-
ing observations is small (at between 3-5 percent for each survey year), and
(2) the range of the bounded subset of observations is restricted through the
imputation algorithm to lie within the lower and upper bound of each income
bracket, thereby formulaically reducing the variance for imputed draws for
all but the highest, open-ended income bracket.
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Table 5: Coefficient of Variation of Quantiles and Moments as Number of Imputations Increase

Yr & # Imputations p10 p25 p50 mean p75 p90 p95 p99 max sum N
97 m=2 0.0000 0.0000 0.0107 0.0054 0.0062 0.0029 0.0047 0.0100 0.0344 0.0052 22805
97 m=5 0.0026 0.0000 0.0063 0.0137 0.0045 0.0159 0.0229 0.0516 0.2556 0.0137 22805
97 m=20 0.0013 0.0000 0.0077 0.0116 0.0076 0.0129 0.0171 0.0382 0.3134 0.0116 22805
98 m=2 0.0000 0.0000 0.0125 0.0272 0.0245 0.0393 0.0553 0.0000 0.0000 0.0272 11356
98 m=5 0.0000 0.0000 0.0090 0.0104 0.0101 0.0160 0.0295 0.0280 0.0000 0.0104 11356
98 m=20 0.0000 0.0000 0.0072 0.0228 0.0136 0.0275 0.0401 0.0615 0.0000 0.0228 11356
99 m=2 0.0000 0.0000 0.0033 0.0229 0.0036 0.0071 0.0204 0.0585 0.0000 0.0229 19562
99 m=5 0.0000 0.0073 0.0136 0.0229 0.0096 0.0180 0.0263 0.0744 0.0000 0.0229 19562
99 m=20 0.0000 0.0145 0.0044 0.0179 0.0131 0.0157 0.0242 0.0469 0.0000 0.0179 19562
00 m=2 0.0000 0.0000 0.0000 0.0061 0.0211 0.0114 0.0107 0.0484 0.0000 0.0062 20538
00 m=5 0.0000 0.0000 0.0000 0.0068 0.0082 0.0075 0.0205 0.0480 0.0000 0.0068 20538
00 m=20 0.0000 0.0000 0.0000 0.0059 0.0138 0.0099 0.0185 0.0357 0.0000 0.0059 20538
01 m=2 0.0000 0.0000 0.0000 0.0087 0.0000 0.0101 0.0100 0.0547 0.0000 0.0087 20156
01 m=5 0.0000 0.0000 0.0000 0.0123 0.0000 0.0138 0.0041 0.0558 0.0000 0.0122 20156
01 m=20 0.0000 0.0000 0.0044 0.0091 0.0000 0.0087 0.0099 0.0344 0.0000 0.0091 20156
02 m=2 0.0000 0.0000 0.0000 0.0046 0.0029 0.0094 0.0179 0.0152 0.0000 0.0046 19549
02 m=5 0.0000 0.0025 0.0000 0.0095 0.0090 0.0140 0.0114 0.0325 0.0000 0.0095 19549
02 m=20 0.0000 0.0070 0.0000 0.0107 0.0121 0.0127 0.0154 0.0293 0.0000 0.0107 19549
03 m=2 0.0286 0.0214 0.0000 0.0006 0.0000 0.0067 0.0055 0.0081 0.0360 0.0006 19359
03 m=5 0.0185 0.0037 0.0000 0.0125 0.0000 0.0103 0.0016 0.0540 0.0652 0.0125 19359
03 m=20 0.0162 0.0099 0.0000 0.0113 0.0005 0.0165 0.0167 0.0376 0.3968 0.0113 19359
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For the highest, open-ended income bracket, we saw that specification of
the prediction equation in the imputation algorithm is important for reducing
the right skewness of the upper tail. Since parameter estimates in tables 4
and 5 use both response propensity and earnings function covariates in the
the model, the variance even in the upper tail of the distribution is relatively
low.

The overall conclusion from this analysis is that stability in the point
estimates of parameters of multiply imputed income is achieved with as little
as two multiple imputations.

5 Conclusion

In this paper we conducted univariate multiple imputation for coarse subsets
of the employee income distribution in South African household surveys from
1997-2003. During this time, the employee income question itself evolved,
shedding greater light on the coarse response mechanism. The coarse data
framework was very useful in guiding the approach not only to the imputa-
tion algorithm, where an important implication was restricting the range of
the imputed draws to lie within each income bracket, but also to the treat-
ment of unspecified responses when they were identified as a source of survey
error. This is one of the major advantages of the coarse data framework:
it encourages an explicit approach to the characterisation of the response
mechanism, which then leads to clear rules about what can and cannot be
accommodated in the imputation step.

For processing error, the fact that two variables are released in the public-
use dataset – one for actual income responses and one for bracketed responses
– implies that there is a non-zero chance of error between these variables that
needs to be addressed when it exists. We identified two types of survey errors:
one where duplicate income responses were identified for the same individual,
and another where unspecified responses were present in the data even when
response options that complete the missing data subset were present in the
questionnaire (i.e. don’t know and refusals). The solution to the first type of
error was to create a new variable for income that overwrites the duplicate
records of bounded income with the actual income values. However, for
the second type of error, there was no simple solution because the problem
ought not to exist for the subsample of interest (employed economically active
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individuals). Hence these observations were not imputed in the main analysis
and analysed separately instead.

An important relationship that repeatedly presented itself in each sec-
tion of this paper was that of the relationship between questionnaire design
and the resulting data structure. This made the analytical task iterative
to an extent more than complex, for it required careful data checks and
question wording and sequencing checks that mandated a fastidious and
detail-oriented approach to the problems and interpretation of the results.
An overall lesson learnt from this analysis is that it is incumbent upon re-
searchers to be absolutely meticulous in their data preparation, imputation,
estimation and analysis tasks when working with micro datasets.

The univariate approach to multiple imputation utilised here allowed for
very specific sensitivity analyses to be performed. Four different specifica-
tions of the imputation models provided the basis for sensitivity analysis to
mis-specification in the imputation algorithm. We used four different models
for this purpose: a mis-specified algorithm (model 1), one that explained the
response process only (model 2), one that explained income itself (model 3),
and a final one that combined covariates from model 2 and 3. It was this
fourth model that was chosen as the first-best model, given the recommenda-
tions for covariate selection of Van Buuren et al (1999). The main limitation
with this model was a reduction in the estimation sample size due to the
greater prevalence of covariate missing data compared to the other models.

The advantage of incorporating predictors for the response process in
the imputation algorithm as well as earnings covariates was that it evidently
reduced the right-skewness of the imputed monthly income values. The
plausibility of imputed draws for the highest, open-ended income bracket,
the refusals, don’t know and unspecified response groups, was clearly affected
by covariate selection in the imputation process. The fact that the first-best
model reduced these values relative to the other three specifications suggests
there is considerable merit to paying close attention to the response process in
multiple imputation algorithms and not simply to predictors of the outcome
variable.

This has important implications for more sophisticated multiple imputa-
tion exercises that seek to impute for covariate coarse data too, for it suggests
that each variable with coarse observations needs: (1) a model of the coarse
data mechanism for that variable (this would include checks for additional
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forms of survey error); (2) an analysis of the factors explaining the response
process for that variable; and (3) appropriate prediction equations for that
variable, which include covariates that explain both the response process and
the outcome variable of interest.

Appendix: Response Propensity Model Predictors

See next page.
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Table 6: Response Propensity Model Predictors
Variable Rationale for inclusion Attribute of respondent being tested
Household head If respondent is HHH, more likely to know about incomes in the hh Cognitive Burden (CB)
Self reporter If a respondent is SR, more likely to know exact income CB
Cohabiting status If respondent in a cohabiting relationship, more likely to know spouse CB

or partner’s income
HH composition Tests effects of number of kids (≤15) & adults (16-64) relative to the CB

# of seniors (≥65; reference group) in hh. The expected sign here is
that an additional adult should increase CB of reporting

Household size The larger the size of hh, the less likely respondent knows all incomes CB
Male Personal characteristics of respondent or proxy Personal Characteristics (PC)
Race Personal characteristics of respondent or proxy PC / CI / WD
Education Education category of respondent or proxy PC / CI
First Language (1) Dummies for 11 official languages in SA. Captures possible socio- Willingness to disclose (WD)

cultural influence to disclose income, though effects ambiguous
First Language (2) Simplified from above to four main SA first languages: Zulu, Xhosa, WD

Afrikaans & English. All others combined into "Other"
Wealth approximation Derived from interaction of home ownership dummy with dwelling type: Correlate of Income (CI)

(1) Owned formal dwelling, including brick house, semi-detached house,
flat or retirement unit
(2) Unowned formal dwelling, same dwelling types as above
(3) Sub-let room or dwelling, including room in main dwelling or
structure in backyard (shack or room), not interacted with ownership
(4) Mud hut or shack in squatter settlement, not interacted with ownership

Expenditure Total household expenditure: continuous in 97,98 & 00; categorical in CI
99, 2001-2003

Owns vehicle Dummy for whether respondent owns vehicle or not. Reflects stock CI
of wealth

Felt unsafe in neighbourhood If respondent feels unsafe, less likely to disclose income (only available WD
in 97 & 98)

Urban Testing the effect of location. Has possible effect on willingness to WD
disclose income
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