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Abstract

I argue that the estimation technique - widely used in the poverty mapping literature
- introduced by Elbers, Lanjouw and Lanjouw (ELL03), is highly sensitive to specifica-
tion, severely biased in finite samples, and almost certain to fail to estimate the poverty
headcount consistently. First, I show that the specification of the first-stage model of
household expenditure strongly influences the estimated headcount; the range of ob-
tainable estimates is on the order of 20% for many districts, and is as high as 48% for
some areas. Further, some specifications imply province-level headcounts which diverge
from the direct estimates by many as six standard deviations. Secondly, I construct
bootstrap confidence intervals for the difference between the estimates under alterna-
tive specifications, which shows that (at a 2% level of significance) finite sample-bias is
present in more than 42% of districts in even the best-performing regions. I calculate
approximate lower bounds for the bias; I find it to be on the order of 3% for most areas,
but the lower bounds range as high as 19.6% in some provinces. Finally, I argue that
consistent estimation of the first stage model is necessary for consistent second-stage
imputations and I decompose the difference between the true and estimated headcount
into a sampling component and a specification component, the latter of which is asymp-
totically persistent. Given these results, it appears that the poverty maps estimated by
this technique reflect primarily the arbitrary and unexamined methodological choices
of their authors rather than robust features of the data.
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1 Introduction

Averages, by their nature, hide variation. For almost all developing countries, the available
data are silent on the geographical variation in poverty or inequality indicators below fairly
high levels of aggregation, such as the province or state. While accurate data on households’
income and consumption are available in many countries, the high costs of collecting such
detailed surveys force the local statistical agencies to design such datasets to be represen-
tative only at high levels. Given such a survey design, reliable information about welfare is
available for at best a handful of households in most lower-level administrative units.

The sparseness of high-quality data on household welfare contrasts sharply with the abun-
dance of national census data. Though censuses rarely include information about income
or consumption, they frequently include information on covariates of welfare - for example,
the demographic structure of the household, the education and labour market histories of
household members, or the presence of physical amenities like running water or electricity -
that are also measured in the smaller survey.

In recent years, a literature which estimates welfare measures (like the headcount, or the Gini
coefficient) at very low levels of aggregation has emerged. This literature owes its existence
to the development of a technique that combines census and survey data to produce highly
disaggregated estimates of functionals of the income distribution. I will refer to this technique
as “ELL,” after the World Bank researchers who first explained it in (ELL02; ELL03), though
a less general version of the technique appeared earlier in (HLLP00). I explain the mechanics
of the technique in more detail in section 2.2, but the core idea is to use the survey data
to create a model of the distribution of income (or consumption) conditional on certain
household covariates. The marginal distribution of the covariates is easily obtained from
the census, since the census is exhaustive and does not suffer from the same sparseness as
does the high-quality survey dataset. Given a homogeneity assumption (conditional on the
covariates), the conditional expectation of a function W (ya) for a small area is simply

µa = E[W (ya)|Xa]

=
∫

RNa

W (ya)dF(ya|Xa) (1)

where Na is the number of census observations in area a, and ya and Xa are the vector of
incomes and the matrix of covariates in the area.

In this paper, I do three things: (a) I demonstrate that the small-area estimates of the poverty
headcount are extremely sensitive to the specification of the model mentioned above, (b) I
argue that this sensitivity should be interpreted as evidence of severe finite-sample bias,
and (3) I show that the likely endogeneity of many of the covariates renders the consistent
estimation of the poverty headcount all but impossible.

I admit that the results here are not without precedent; a careful reading of the poverty-
mapping literature reveals that even on the same dataset, different first-stage models lead to
very different small-area estimates. For example, (ABD+02) reports estimates of the poverty
headcount for magisterial districts in the Free State province of South Africa. Yet, an ear-
lier version of the same poverty map, produced by the same authors, reports very different
estimates. For example, the estimated headcount for the Rouxville district is reported to
be 74.2% with a standard error of 2.5% in the later, published version of the paper, making
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it the poorest magisterial district in the province. However, an earlier version of the pa-
per - (ABL+00), released as a technical report by Statistics South Africa - puts poverty in
Rouxville at 53.0%, with a standard error of 0.91%, making it only the 29th-poorest district
in the province.

The paper proceeds as follows: in section 2, I introduce the notation necessary for analysing
the properties of the ELL technique and I explain how the ELL technique has been used in
the literature to generate poverty maps. In section 3, I describe the datasets I use. Section
4 contains the main results and analysis. I present my evidence of the sensitivity of the
estimates to specification in section 4.1; I argue that this sensitivity indicates finite-sample
bias in section 4.2; and in section 4.3, I analyse the likely consequences of endogeneity for
the consistency of the estimates. I conclude in section 5. In the rest of this introductory
section, I explain why reliable estimates of poverty maps are of great policy significance, and
I briefly review the poverty mapping literature.

1.1 Poverty Maps: Relevant For Policy and Academic Research

Policymakers all over the world, but especially in developing countries, want to target the
poor geographically. In South Africa, a clause in the 1996 Constitution1 requires that na-
tionally raised revenue be divided “equitably” between national, provincial and local govern-
ments. Further, the Constitution explicitly requires Parliament to interpret “equitable” in
terms of “the fiscal capacity and efficiency of the provinces and municipalities, [the] devel-
opmental and other needs of provinces, local government and municipalities, [and] economic
disparities within and among the provinces.”

The South African government has implemented this clause by creating the “equitable
share” grant, of which R25.6 billion - roughly $3 billon - went to local governments (see
(Nat09a; Par09) for further details) in 2009. The majority of equitable share funds - about
70%, according to (Dep02; Loo04) - are allocated to municipalities in proportion to their lev-
els of poverty.2 The National Treasury estimates that the equitable share grant accounts for
17.5% of municipal operating revenue across the nation, though this hides significant inter-
regional variation - specifically, large urban municipalities are able to raise funds through
property taxes and utility provision; rural municipalities, which have poorer populations
and far less commercial activity, depend much more heavily on the equitable share grant.
Hence reliable estimates of poverty at a fine level of disaggregation are very important from
a political perspective.

These estimates are important for more than just antipoverty policy. Small-area estimates
of welfare measures would be useful as inputs into other areas of research. For instance, the
growth literature has increasingly recognised the salience of welfare distribution: (BD03) is
just one prominent example. Secondly, reliable estimates of inter-regional welfare distribu-
tions is clearly a prerequisite for many lines of inquiry in political economy, public economics
and economic geography. Furthermore, there are reasons to suspect that welfare distribution,
broadly conceived, affects other social and economic phenomena, like crime, investment and
migration. In fact, at least one study - (DÖ05) - has already used small-area estimates of
welfare calculated in exactly the manner described below to examine the spatial distribution

1Chapter 13, section 214 - see (Par96).
2A full explanation of the equitable share formula can be found in (Nat09b).
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of crime in South Africa.

1.2 The Present State of the Literature

The literature thus far has primarily produced estimates of the poverty headcount for var-
ious countries, though some papers compute local inequality measures, too - for example
(ELM+03). South Africa is not alone in its attempts to target the poor geographically:
(HS02) and (Wor07) outline the antipoverty programs in - among others - Guatemala,
Nicaragua, Vietnam (MBE03; MB05), Brazil (ELLL04; ELL08), Albania (CDM07), Mo-
rocco (Lan04; Lit07), and Indonesia (AG07) which have used the (mostly World Bank -
generated) poverty maps for this purpose.3 Some World Bank researchers - e.g. (HL98) -
have even advocated for the use of poverty maps to plan infrastructural investments.

To my knowledge, no paper has yet addressed the issues of specification error and finite-
sample bias; nor has any author discussed the possibility that the poverty map estimates
produced by the ELL technique might be inconsistent. The few papers that do attempt to
evaluate the properties of the ELL estimates have all focused on the size of the estimated
standard errors. For example, (TD09; BDLR06) argue that the failure of conditional homo-
geneity may lead to the understatement of standard errors, while (ELL08; LLED07; LR06)
respond that the confidence intervals generated by ELL have coverage rates approximately
equal to the nominal rates in specific datasets.

2 The Mechanics of Poverty Mapping

2.1 The Setup

We divide the population of interest up into several “regions”. Monetary variables - either
(log) income or expenditure - are denoted y. I define a “region” to be the lowest admin-
istrative level for which we have reliable information on the distribution of expenditure, y,
while an “area” is the lowest administrative level by which the census data can be grouped.
A given region consists of a number of small areas, indexed by the subscript a (1 ≤ a ≤ A).

Since welfare measures are almost always defined over individuals, yet survey data is almost
universally collected at the household level, the caveat that the data need to be weighted
by household size is ever-present here. That said, I index households with a subscript i.
Household-level covariates that appear in both the census and survey data are represented
by xi.

2.2 The ELL Technique

There are two basic steps to the ELL technique. In the first stage, a model of the conditional
distribution y|x must be estimated. Typically this is done by generalised least squares,
although some papers use ordinary least squares. Indexing households by h and survey

3A full catalogue of the maps generated by the World Bank can be found at
http://go.worldbank.org/5Q9SZRC3D0
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clusters by c, the feasible GLS estimation is performed by first estimating

ych = xchβ0 + uch (2)

over the survey observations at the region level. The residuals uch are typically presumed
to obey a random-effects structure:

uch = ηc + εch (3)

with ηc independent of εch. If this true, then the OLS residuals should be demeaned over
the survey clusters to form estimates of the cluster effect, η, and the household-specific dis-
turbance, ε. To “allow” for heteroskedasticity in ε, a model of the squared residuals is then
fitted, which yields an estimate of the household-specific variance for each census household
and leads to “normalised” first-stage residuals ε̂∗ch. Typically the model is of logistic form
with an upper bound set equal to the (arbitrary) level 1.05×maxc,h{ε̂2

ch}.

In the second stage, a simulated error term ũch is drawn from the assumed distribution for
each census household, which yields a complete census of imputed log expenditures as

ỹrch = xchβ̂ + ũrch (4)

for the rth simulation draw.4 The value of the welfare measure in each area a is then com-
puted directly from the simulated values as W (ỹra). The simulation step is repeated R times.
The mean of W (ỹra) over these simulations is µ̂a, the ELL estimate of the (conditional ex-
pectation of) W in area a. The standard deviation of W (ỹra) over the simulations is the ELL
estimate of the standard error of µ̂a.

Because W (·) is frequently nonlinear in y, (ELL03) suggests integrating the estimated µ̂a
over the sampling distribution of β̂. Since this is unknown, researchers hoping to use the
technique must simulate draws β̃ from the asymptotic distribution of the first-stage estima-
tors.

Effectively, ELL estimates are Monte Carlo integrals:

µ̂a =
1
R

R∑
r=1

W (ỹr)

≈
∫

RK

[∫
RNa

W (y)f̂(y|Xa, β̃)dy
]
f̂a(β̃|XR, β̂)dβ̃ (5)

where K = dim(β0), f̂(y|Xa, β̃) is the estimated conditional density of log expenditure
based on the parameter estimate β̃, and f̂a(β̃|XR, β̂) is the (estimated) asymptotic sampling
density of β̂. Both of these densities are obviously determined by the first-stage specification.

2.3 Implementation

The specification x is, in my reading of the poverty-mapping literature, never motivated.
However, the implicit criterion used in almost all of the papers in this literature is that

4A distribution for the residuals has to be chosen by the researcher. Several papers use the empirical
distribution of the first-stage residuals, but some authors use parametric distributions - typically the normal
or t distributions (scaled to have the same variance as the first-stage residuals). In addition, the researcher
must choose whether to simulate the “cluster effect” eη at the census cluster level or at a higher level.
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the first-stage regression model (or the OLS stage of feasible GLS) should have a “high” R2

statistic, though cutoff values are never explicitly stated. Unfortunately, as I argue in section
4.3, it is consistent estimation of β0, not the quality of the in-sample prediction, that matters
for the accuracy of the second-stage estimates. Nonetheless, I respect this convention: as I
document in the appendix, section B.1, no estimate in this paper is derived from a first-stage
model with an R2 lower than 0.442. Even that value is unusually low: the vast majority of
the first-stage models I estimated returned R2-statistics higher than 0.5.

There is one other caveat about the models used to “predict” consumption in the poverty
mapping literature: that district-level means (which can be obtained from the census data)
be included as regressors. A spate of papers (see (ELM+03; ELL02; LLED07; LR06)) by the
creators of the ELL technique emphasize that area means should be included in the first-
stage regression to “capture” cluster level effects. I follow their instructions: every estimate
in this paper is based on a first-stage specification that includes at least 10 area-level means.
I therefore consider the estimates that follow to be admissible in terms of the implicit criteria
of the poverty-mapping literature.

Apart from the specification of the first-stage model, I kept the following choices constant
across all estimations:

(a) I used GLS estimation, first obtaining an estimate of β̂ by OLS and then estimating the
cluster effects η̂ and ê from the resulting residuals.

(b) I drew both the cluster effects and the standardized household errors from their respec-
tive empirical distributions. For the heteroskedasticity model, I chose throughout to
use all the household-level variables in x.

(c) I simulated the cluster effect η̃c at the area level (magisterial district). According to
(LR06), doing so “allows” for high-level spatial correlation.

(d) I chose to draw the household idiosyncratic error for census households from the set of
normalised first-stage residuals that correspond to the survey cluster from which their
simulated cluster effect, η̃c, was drawn. According to (ELL03), this approach “allows
for nonlinear relationships between location and household unobservables.”

(e) I used 100 simulations to perform the Monte Carlo integration.

I emphasize that at no point does the procedure outlined in the original papers (ELL02;
ELL03), which have become the methodological basis for this literature, insist on the use
of any particular assumptions on functional form, error structure, estimation technique, or
simulation procedure (i.e. whether to simulate distinct cluster effects for each census cluster,
or for some higher level of aggregation). Consequently those papers do not describe an es-
timator in the technical sense (i.e. a measurable function of the observed data). Therefore,
my results are vulnerable to the criticism that I have not calculated my estimates according
to the true poverty-mapping methodology, but according to an apparently similar, though
distinct, technique. In appendix A, I describe the diversity of methodological choices con-
sistent with the ELL technique and the associated computations in more detail, and I show
that my choices in implementing the ELL technique are consistent with the most popular
practices in the poverty-mapping literature.

Of course, the reader may judge for herself if the results are driven mostly by arbitrary
methodological choices; but this is exactly the point at issue.
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3 The Data

I employ three datasets in this paper, all of which were constructed by Statistics South Africa
(the national statistics agency): the 1995 Income and Expenditure Survey (Sta97); the 1995
October Household Survey (Sta96); and the 10% sample of the 1996 national population
census (Sta98).

3.1 Context: South Africa’s Changing Administrative Geography

Apartheid, the legal structure of racial discrimination and segregation that was enforced in
South Africa from 1948 until 1991, produced a dysfunctional system of overlapping admin-
istrative hierarchies. These parallel bureaucracies were created as a political conceit, to give
substance to the white government’s official claim that the different races should “develop
separately”.

When the three datasets (introduced below) were collected, South Africa was partitioned
into 354 magisterial districts, as defined by the judiciary. Magisterial districts were nested
in nine provinces. In 1997, the democratically elected government consolidated these systems
into a single sub-national administrative hierarchy, consisting of nine provinces, 47 district
councils (most, but not all, of which are contained in a single province), and 283 local mu-
nicipalities. Local municipalities, luckily, are nested in district councils.

The 10% census sample and the 1995 October Household Survey (described below) do have
information on magisterial district, which allows me to attach (magisterial) district-level
means to observations in the survey data, as is encouraged by the poverty-mapping literature.

3.2 Income and Expenditure Survey/October Household Survey

Originally intended to provide a basis for inflation data, the Income and Expenditure Sur-
veys (IES) are a series of household-level surveys, covering patterns of consumption and the
composition of income. An IES has been collected by Statistics South Africa every five years
since 1995.

The 1995 IES was collected as the second phase of the October Household Survey (OHS)
of the same year. The October Household Surveys (OHS) were a series of household-level
surveys - covering the labour market experiences of the population, migration, household
welfare (access to amenities and goods ownership, for example), and other demographic in-
formation - that were collected annually from 1993 to 1999. As such, the sampling design of
the 1995 IES is identical to that of the 1995 OHS. Specifically, the population (as recorded
in the 1991 census) was stratified by race, urban/rural category and province. Then, 3000
enumerator areas were sampled, and ten households were randomly chosen within each of
the selected enumerator areas, making for a total sample of 30 000 households. Non-response
was very low, with only 405 households refusing to cooperate. The final OHS sample thus
contained 29 595 households, representing a total of 130 787 persons.

Because the poverty line in this paper depends only on total household welfare and not
on per-capita equivalents, I use the logarithm of total monthly household consumption, as
measured in the IES, as the dependent variable. The household covariates (education of
members, demographic structure etc.) come from the OHS. Because the IES was conducted
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after the OHS (in December 1995), there was some attrition. Also, some households do
not match between the two surveys; I therefore lose some observations in merging the IES
and the OHS. Furthermore, I decided to drop the households with missing values for any
of the variables in the subsequent analysis. In the end, I was left with a sample of 27 830
households, representing 122 607 individuals.

3.3 1996 South African Census

In 1998, Statistics South Africa released the 10% sample of unit records, which was a system-
atic sample of the full census data, after stratification on province, district council and local
authority.5 This data was collected in October 1996, and was intended to be an exhaustive
sample of all persons inside the borders of the Republic on Census night (October 9th−10th).

The census contains information on households’ demographic structure; on variables de-
scribing employment and labour market outcomes; and on their living conditions and other
economic variables.

The public release of the census data includes the institutional population (persons in hos-
pitals, prisons, boarding schools, workers’ hostels, military barracks, etc.). I have omitted
these observations, since they lack a clear analogue of the census’ definition of “household”.
There were 12 995 such persons in the person-level dataset, out of a total 3 481 931 individ-
uals in the 10% sample.

3.4 Data Construction and Cleaning

I examined the census and IES metadata and identified all the variables that contained com-
parable information. In fact, this turns out to be the same as the set of variables used in
(ABD+02; ABL+00). There are 16 such household-level variables, comprised of information
on the demographic structure of the household, economic status (e.g. the type of dwelling,
the number of skilled workers resident in the household, whether the household owns a tele-
phone), and on the nature of the household’s neighborhood (e.g. urban/rural dummies,
whether the dwelling is located in a former “tribal homeland”).

I then computed the mean value of these variables, as well as of other indicators available
in the census but not in the OHS - such as whether the household owns its dwelling - over
each magisterial district in the census data. Since I have geographical information in both
datasets, I was able to attach the area means to the IES observations.

4 Results

I calculate the poverty headcount using the 1995 IES as the survey dataset and the 1996
South African population census by the ELL technique, using the specific methodological
choices described in section 2.3. For comparability with the results of (ABD+02; ABL+00),
I use the following poverty line:

5Unfortunately, the geography information in the public release of the 1996 census does not conform to
the new administrative divisions, even though the sampling process involves stratification on district council.
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A person is poor if they live in a household with total expenditure less than R800/month.

Say there are KH household-level covariates and KD area-level means, and we pick kH and
kD of each. Then there are(

KH

kh

)
×
(
KD

kd

)
possible choices of first-stage specification.6

I sample 50 such specifications at random and compute µ̂a (for each a) given each specifica-
tion. I generate random first-stage specifications by drawing a random subset of 75% of the
possible household covariates and 75% of the district-level mean variables. For comparison,
I also calculated estimates of the headcount using every variables in the dataset that was
not dropped due to collinearity. I call this last specification the “maximal model”.

Space constraints prevent me from displaying all of the results in this paper. I document
those results not displayed below in the appendix, in section B.

4.1 Sensitivity to Specification

4.1.1 Point Estimates: Small Areas

In Table 1, I present summary statistics for the magisterial districts in the North West
province over the 50 randomly generated specifications; I ranked the areas in descending or-
der of the estimated headcount (under the maximal model). I want to highlight two features
of the distributions of estimates over the different specifications.

Firstly, the range of estimates that can be obtained is very large. For Kudumane, for
example, one specification leads to a low (by South African standards) headcount of 27.8%,
while another specification leads to the spectacularly high headcount of 75.9%. By a judicious
choice of specification, a researcher could throw over 48% of the residents of this area into (or
out of) poverty. Although Kudumane is the worst example of this sensitivity in the North
West province, it is not without peer. Even the Brits district, which has the narrowest range
of estimates in the province (17%), the interquartile range is a substantial 4.9%.
Secondly, the instability is not merely an artifact of a few poorly chosen models. For most
of the districts in Table 1, the interquartile range of the headcount estimates is high too,
generally on the order of 8%, but for several areas it is above 10%. To see this, look at
Figure 1, where I plot kernel density estimates of the distribution of headcount estimates
for selected areas over the 50 random specifications. A casual glance at Figure 1 indicates
that it is easily possible to obtain very different estimates of the headcount just by picking
different specifications.

Magisterial District HC (maximal) Mean Min Max Range IQR
Phokwani 0.735 0.540 0.264 0.738 0.474 0.156
Kudumane 0.706 0.565 0.278 0.759 0.481 0.126

Continued on next page. . .

6In practice, this varies between regions because some variables end up getting dropped in some provinces
but not in others. For example, in the Western Cape KD = 18, KH = 15, so with kH = round(0.75×KH) =
11 and similarly for kd = 14, we have 1365× 3060 = 4 176 900 possible specifications.
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Table 1 (continued from previous page)
Magisterial District HC (maximal)7 Mean Min Max Range IQR

Wolmaransstad 0.609 0.607 0.480 0.727 0.248 0.082
Huhudi 0.590 0.577 0.328 0.744 0.416 0.087

Schweizer-Reneke 0.588 0.668 0.554 0.761 0.207 0.069
Mmabatho 0.569 0.488 0.224 0.659 0.435 0.130

Vryburg 0.522 0.377 0.219 0.515 0.297 0.083
Lichtenburg 0.481 0.445 0.309 0.586 0.278 0.096
Ventersdorp 0.429 0.390 0.284 0.570 0.286 0.063

Mankwe 0.371 0.420 0.220 0.582 0.362 0.111
Potchefstroom 0.364 0.315 0.208 0.399 0.191 0.076

Madikwe 0.349 0.386 0.214 0.589 0.375 0.121
Christiana 0.328 0.345 0.226 0.454 0.229 0.073

Brits 0.291 0.272 0.205 0.378 0.173 0.049
Delareyville 0.288 0.410 0.276 0.587 0.311 0.067
Ga-Rankuwa 0.241 0.279 0.208 0.383 0.174 0.052

Temba 0.231 0.279 0.172 0.556 0.384 0.074
Klerksdorp 0.221 0.229 0.120 0.352 0.232 0.053
Rustenburg 0.193 0.306 0.156 0.413 0.257 0.056

Table 1: Estimates Over 50 Random Specifications, North West

4.1.2 Intra-Regional Rankings

The instability of the headcount estimates is cannot be blamed on a rank-preserving region-
wide shift in the estimated headcount. To see this, I compared the rankings of magisterial
districts within the province across specifications. The ranges of rankings obtained from the
various specifications are as dramatic as those for the point estimates. The ranges observed
in Table 2, for many of the districts, imply that mere specification choice can not merely
shift, but practically reverse the relative rankings of the areas.

Magisterial District Rank (maximal) Mean Min Max Range IQR
Phokwani 1 4.9 1 12 11 3
Kudumane 2 4.0 1 11 10 3

Wolmaransstad 3 3.3 1 8 7 2
Huhudi 4 3.5 1 9 8 2

Schweizer-Reneke 5 1.5 1 5 4 1
Mmabatho 6 6.7 2 17 15 3

Vryburg 7 11.2 4 18 14 4
Lichtenburg 8 7.8 2 15 13 4
Ventersdorp 9 10.1 5 15 10 3

Mankwe 10 9.3 5 16 11 2
Potchefstroom 11 13.9 8 19 11 4

Madikwe 12 11.1 5 19 14 4
Christiana 13 12.7 6 19 13 3

Brits 14 16.1 8 19 11 3
Delareyville 15 9.4 4 16 12 3
Ga-Rankuwa 16 16.0 9 19 10 2

Continued on next page. . .
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Table 2 (continued from previous page)
Magisterial District Rank (maximal)8 Mean Min Max Range IQR

Temba 17 15.5 3 19 16 5
Klerksdorp 18 18.0 14 19 5 2
Rustenburg 19 14.8 11 19 8 3

Table 2: Within-Province Rankings Over 50 Random Specifica-
tions, North West

Consider the Temba district, for example. In a province of only 19 magisterial districts, a
careful choice of specification could make Temba appear either relatively very well-off (the
least poor area in the province), or bitterly poor (the third poorest). Again, Temba is not
atypical; for 14 out of the 19 areas in Table 2, the range of the rankings over the 50 random
specifications is greater than 10. This means that for such an area, there is a pair of spec-
ifications j, j′ such that the ELL estimate under j puts the area in the poorest half of the
province; under the specification j′, the area would be considered in the richest half of the
intra-provincial ranking.

4.1.3 Point Estimates: (Reaggregated) Regional

Since the headcount is additively separable, I reaggregated the estimated headcounts in each
area, weighting by the population size of each, to obtain the implied regional headcount for
each specification. This provides a direct check of the reliability of the ELL estimates, since
the IES data is representative at the provincial level.

Summary statistics on the distribution of the implied provincial headcount for each of the
nine provinces appear in Table 3, alongside the headcount estimates from the IES data (ad-
justing the standard errors for the clustered sample design).
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Figure 1: Distribution of Estimates for Kudumane (North West) Over 50 Random Specifi-
cations
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Regrettably, the ELL estimates appear to contradict the direct (IES) estimates, at least for
some specifications. For example, the direct estimate of the headcount for the Eastern Cape
is 45.2%. This is very close the same as the mean of the implied ELL estimates over the
random specifications, 45.4%. However, the ELL estimates range as high as 51.1%, more
than six standard deviations above the IES estimate. For the Free State, the average ELL
estimate is 40.9%, while the IES data suggests that the headcount is substantially higher -
47.6%. The worst performer, though, is Gauteng: the IES estimate, 6.6%, is entirely outside
of the range of ELL estimates. The lowest ELL estimate of Gauteng’s headcount, 7.0%, is
about half a standard deviation higher than the IES estimate.

Though the reaggregated estimates have narrower ranges than the area-specific ones, there
is still substantial variation across specifications. This is evident in Table 3. At the time of
the 1996 Census, Gauteng had a population of approximately 6.9 million. A shift of 4.5% in
Gauteng’s headcount estimate would therefore imply the transition of about 310 500 persons
in (or out) of poverty; and Gauteng is the least sensitive of the provinces.

In Figure 2, I display the density of the implied headcount for the Eastern Cape over the
randomly generated specifications. For the Eastern Cape, specification choice is powerful
enough to either throw the equivalent of a mid-sized city - over half a million people - into
poverty, or to lift them out of it. (The Eastern Cape had a population of approximately 6.1
million at the time.)

Figure 2: Density of Implied Headcount Over 50 Random Specifications, Eastern Cape

I remind the reader that all of these estimates are based on first-stage models that have
“high predictive power,” and that the poverty mapping literature has almost universally
adopted this informal criterion as its sole methodological principle. In section 4.3.1 I explain
why this criterion is inadequate, and I show how high R2 values can coexist with very poor
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models (in the sense of consistent parameter estimation).

4.2 Finite-Sample Bias

4.2.1 Existence

The differences documented above are so large - for some areas, the range of possible esti-
mates is on the order of 0.5 or even larger - that it seems at least plausible that distinct
specifications are not centred on the same values. If the latter holds, then at least some
implementations of ELL yield biased estimates. As trivial as this point seems, it has been
completely ignored by the literature.

Either all choices of specification lead to unbiased estimates, or at least some do not. The
same comments hold with respect to the consistency of the estimates, and I will discuss the
conditions under which ELL estimates will be consistent in section 4.3. Below, I use this
logical truism to test for the presence of finite-sample bias indirectly.

Consider a pair of specifications for the first-stage model; call them X and W. If both
estimates µ̂a(X) and µ̂a(W) are unbiased (for a given area) then the expectation of their
difference must be zero. Define

mx = E[µ̂a(X)]
mw = E[µ̂a(W)]

Say the sample size of the survey is s. A natural test statistic for H0 : mx = mw (against
H1 : mx 6= mw) would be

d̂s = µ̂a(X)− µ̂a(W)
= [µ̂a(X)− µa] + [µa − µ̂a(W)] (6)

since under H0, E[d̂s] = ds = 0. If we reject H0, then we know that at least one of the two
estimators is biased.

I approximate the joint sampling distribution of (µ̂a(X), µ̂a(W)) - and, by implication, the
sampling distribution of d̂s - by bootstrapping the estimates. For each region I chose two
of the 50 randomly generated specifications. Then, for b = 1, . . . B = 200, I resampled the
IES observations with replacement. On each resampled dataset I then computed the ELL
estimates for each specification, µ̂∗b(X), µ̂∗b(W), and their difference, d̂∗s,b.

The resulting first-stage models performed well in terms of the R2 statistic. All provinces
have mean R2-values over 0.5, and no first-stage model obtains an R2 lower than 0.47. Thus,
I also consider all of the bootstrapped estimates to have satisfied the literature’s criteria.

Consider Figures 3 and 4, which show the joint distribution of the estimated headcount for
Komga, in the Eastern Cape, over the 200 bootstrap samples. The ranges of the two esti-
mates relative to one another is the most striking feature of Figure 3: the scatter does not
even come close to the diagonal. If these estimators had the same means, we would expect
to see much of the scatter concentrated about the line of equality, where µ̂a(X) = µ̂a(W).
Instead, every single pair of estimates satisfies the same strict inequality µ̂a(X) > µ̂a(W)
(where µ̂a(W) is plotted on the vertical axis).
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Figure 3: Joint Distribution of Bootstrapped Estimates for Komga (Eastern Cape)

The marginal densities for Komga are depicted in Figure 4. Notice how the support of the
densities are disjoint, which implies that 0 will be outside of the support of the bootstrap
density of d̂s. In fact we can see this directly in Figure 5; not one of the bootstrapped pairs
of headcounts enjoys a discrepancy of less than 10%.

As with the sensitivity of the point estimates, the bias result holds at the region level too. I
calculate the implied regional headcount under both specifications for each bootstrap sam-
ple to obtain an approximation to the sampling distribution of d̂∗b at the region level. The
resulting density for KwaZulu-Natal is depicted in Figure 6 below. There is clearly a sys-
tematic difference between the two estimates; and again, 0 is outside of the support of the
(approximate) sampling density of d̂s.

I compute 80%, 90%, and 98% confidence intervals for the difference between the estimates
by calculating the 100 × (α/2, 1 − α/2) percentiles of the bootstrap distribution of the d̂∗b .
This allows me to test H0 : ds = 0 for each magisterial district and for each region. I tabulate
the results of these tests in Table 4.

The hypothesis of mutual lack of bias fails spectacularly. Not one of the provinces fails to
reject the null, and even the strictest tests (at a 2% level of significance) we can reject H0

for more than half of the areas in all provinces save Mpumalanga and Limpopo. If we trade
off a little bit of size for power, we can reject H0 for well over half of the districts in all
provinces at 10% significance, and for the Western Cape, we can reject d = 0 for every single
area. And the most powerful test - at 20% significance - rejects H0 in more than two-thirds
of the areas in every province, with some provinces (the Free State, the Western Cape, and
KwaZulu-Natal) confirming the presence of bias for over 90% of their magisterial districts.
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Figure 4: Marginal Bootstrap Densities for Komga (Eastern Cape)

Figure 5: Marginal Bootstrap Density for Difference in Estimates, Komga (Eastern Cape)
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Figure 6: Marginal Bootstrap Density for Difference in Estimates, Reaggregated Headcount
(KwaZulu-Natal)

4.2.2 Magnitude

Having confirmed the presence of finite-sample bias, I estimate a lower bound for its magni-
tude with half the absolute value of the mean of d̂∗s,b. This is truly a lower bound, because

E[d̂s] = E[µ̂a(X)− µa]− E[µ̂a(W)− µa]
= bias(µ̂a(X))− bias(µ̂a(W)) (7)

implying that

1
2
|E[d̂s]| =

1
2
|bias(µ̂a(X))− bias(µ̂a(W))|

≤ 1
2

(|bias(µ̂a(X))|+ |bias(µ̂a(W))|)

≤ max{|bias(µ̂a(X))|, |bias(µ̂a(W))|} (8)

Thus, for each area (or region) the statistic

l̂s =

∣∣∣∣∣ 1
2B

B∑
b=1

d̂∗s,b

∣∣∣∣∣ (9)

is an approximate lower bound for the size of the bias of one of the estimators. I calculate
this lower bound and I tabulate the summary statistics in Table 5.

The estimates in Table 5 tell a story that has now become familiar: the estimates for the
North West province are particularly badly behaved, with half its areas having finite-sample
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Significance Level
Province 2% 10% 20%

Areas 97.6 100.0 100.0
W Cape Region Yes Yes Yes

Areas 73.1 79.5 84.6
E Cape Region Yes Yes Yes

Areas 50.0 69.2 80.8
N Cape Region Yes Yes Yes

Areas 84.6 90.4 94.2
Free State Region Yes Yes Yes

Areas 74.5 88.2 90.2
KwaZulu-Natal Region Yes Yes Yes

Areas 73.7 78.9 89.5
North West Region Yes Yes Yes

Areas 54.2 62.5 75.0
Gauteng Region Yes Yes Yes

Areas 45.2 58.1 67.7
Mpumalanga Region Yes Yes Yes

Areas 41.9 61.3 67.7
Limpopo Region Yes Yes Yes

Table 4: Percentage of Areas Rejecting ds = 0, by Province and Significance Level

Province Median Min. Max. Regional Lower Bound
Western Cape 0.040 0.012 0.075 0.034
Eastern Cape 0.035 0.001 0.094 0.032

Northern Cape 0.039 0.001 0.098 0.037
Free State 0.048 0.000 0.098 0.047

KwaZulu-Natal 0.035 0.001 0.096 0.026
North West 0.070 0.004 0.196 0.051

Gauteng 0.017 0.002 0.055 0.016
Mpumalanga 0.022 0.001 0.102 0.022

Limpopo 0.025 0.002 0.093 0.017

Table 5: Summary Statistics - Lower Bounds for Bias, By Province

biases of, at best, 7%, though the other provinces do not fare much better. For example,
under one of the chosen specifications, the estimated headcount for every single area in
Limpopo is biased by at least 2%, and for some areas in that province, by at least 9%. And
the situation is no better for the region-level estimates: some admissible specifications can
yield implied headcounts that are biased by at least 4.7%, using the example of the Free
State.
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4.3 Consistency

Because the set of available regressors is constrained by those variables which are present
and measured comparably in both the survey and the census data, the choice of specification
is perforce atheoretic. Unfortunately the type of covariates which are likely to be included
are very likely to be endogenous. For example, in the South African data I used in this
paper, the possible regressors include variables on the household’s amenities: whether it
has a telephone, electric lighting, formal sanitation facilities, etc. Regardless of whether the
dependent variable is expenditure or income (here, I have used expenditure) the possibility
of simultaneity bias cannot be easily dismissed. Similarly, the demographic variables present
in census data (like household size or the gender of the household head) are almost certainly
correlated with the regression error in any model of consumption.

4.3.1 A Simple Illustration of the Inadequacy of the R2 Criterion

First, I want to dismiss any persistent concerns that the high first-stage R2 statistics indicate
that the second-stage imputations will be close to the true values. Consider the following
data-generating process:

yi = xiβ0 + εi (10)
Cov(x, ε) = α (11)

with E[x] = 0 = E[ε], Var[x] = Vx, and Var[ε] = σ2.

Say we have a simple random sample of size s from this process and we compute β̂ by OLS.
Then the R2 measure is

R2
s =

1
s

∑s
i=1(xiβ̂s − ys)2

1
s

∑s
i=1(yi − ys)2

=
(β̂s)2( 1

s

∑s
i=1x

2
i )− 2(β̂s)(ys)(xs) + y2

s
1
s

∑s
i=1(yi − ys)2

(12)

Define

θ = plim
s→∞

β̂s

= β0 +
α

Vx
(13)

The denominator of (12) is consistent for Var[y] = β2
0Vx+2β0α+σ2. Using Slutsky’s Theorem

and the fact that (x2
i )
∞
i=1 is an i.i.d. process when (xi)∞i=1 is, we see that the numerator, the

“explained” sum of squares, has probability limit

plim
s→∞

1
s

s∑
i=1

(ŷi − ys)2 = θ2Vx − 2θE[y]E[x] + (E[y])2

=
(
β0 +

α

Vx

)2

Vx

= β2
0Vx + 2β0α+ α2/Vx
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so that

R2
∞(α) = plim

s→∞
R2
s

=
β2

0Vx + 2β0α+ α2/Vx
β2

0Vx + 2β0α+ σ2
(14)

Notice that R2
∞ −→ 1 as α −→ ±σ

√
Vx. This is perfectly intuitive: if x and ε are highly

correlated, then x should “explain” much of the variation in y - the x part and most of the
ε part, too! So a high R2 might just indicate severe endogeneity, which also means that
|θ − β0| >> 0.

4.3.2 Direct Evidence: Specification Choice Shifts The Conditional Mean

Now, to see why first-stage consistency (and hence the choice of specification) has such a
large impact on the estimates, despite the uniformly high R2 values, consider the formula
for the estimator µ̂a(Xa) (neglecting the error due to numerical integration):

µ̂a =
∫

RK

[∫
RNa

W (y)f̂(y|Xa, β̃)dy
]
f̂a(β̃|XR, β̂)dβ̃

This suggests two ways in which the ELL technique can fail.

Firstly, f̂a(β̂|XR), the estimated asymptotic distribution of β̂ - which we get from the first-
stage regression - could be a poor approximation. Estimating β̂ inconsistently is a good way
to ensure this. In particular, if plims→∞ β̂ = θ 6= β0, the distribution with respect to which
we integrate the inner integral (which is a function of β̃) will concentrate probability mass
on ever-smaller neighbourhoods of θ as the IES sample size, s, increases. This only matters
if getting β right matters. It turns out that it does, which I will show below.

Secondly, f̂(ya|Xa, β̂), the implied conditional density of log expenditure, could be a poor
approximation to the true conditional density. Intuitively, if β̂ is not consistent for β0 but
instead for θ 6= β0, the hyperplane xiβ̂ about which each household i’s simulated (log) ex-
penditure varies will differ systematically from the true conditional mean xiβ0.

In fact, we can see this happening directly from the estimation results. In Figure 7 I exhibit
the kernel density estimates of the marginal density of xβ̂j for alternative specifications j
for Bizana, in the Eastern Cape.

The difference in the estimated conditional mean between the two specifications is visually
obvious. For Bizana, the estimated density of the conditional mean under specification 2 is
strongly concentrated below the poverty line, while specification 1 appears to predict that a
substantial minority of individuals will obtain incomes above the poverty line. And, indeed,
we see this in Figure 8, which displays the marginal densities of the bootstrap distribution
of the two headcount estimates for Bizana: the density for specification 2 puts most of its
probability mass to the right of the density for specification 1.
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Figure 7: Estimated Conditional Mean Log Expenditure Under Different Specifications,
Bizana (Eastern Cape)

Figure 8: Marginal Bootstrap Densities for Bizana (Eastern Cape)

Figure 7 certainly suggests that inconsistent estimation in the first stage of ELL will have a
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large impact on the final estimates of the headcount. In fact we can decompose the difference
between the true headcount and the headcount as estimated by the ELL technique into two
components that I call sampling error and specification error. Below, I show that although
the sampling error becomes negligible with large survey samples, the specification error is
likely to persist asymptotically, unless the first-stage estimation is consistent.

4.3.3 Specification Error and Sampling Error: A Formal Decomposition

If, as in this paper, W (·) is the headcount measure the true (conditional) expected value of
W is:

µa =
∫

RNa

[
1
Na

Na∑
i=1

1{xiβ0+ui<z∗}

]
f(u)du

=
1
Na

Na∑
i=1

P(ui < z∗ − xiβ0)

=
1
Na

Na∑
i=1

Fi(z∗ − xiβ0) (15)

where Fi(·) is the true marginal cumulative distribution function of census household i’s
disturbance term, ui.

Ignore the numerical integration over the presumed sampling distribution of β̂. What we are
able to calculate is

µ̂a =
∫

RNa

[
1
Na

Na∑
i=1

1{xi
bβ+ui<z∗}

]
f̂(u)du

=
1
Na

Na∑
i=1

F̂ si (z∗ − xiβ̂) (16)

where F̂ si (·) is the marginal cumulative distribution function chosen by the researcher, and
the superscript s emphasizes that the function itself depends on the survey sample, either
through rescaling (if a parametric distribution is imposed on u) or directly (if, say, the em-
pirical distribution of the first-stage residuals is used).

Each term Fi(z∗ − xiβ0)− F̂ si (z∗ − xiβ̂) in the difference (15) - (16) is identically equal to

Fi(z∗ − xiβ0)− F̂ si (z∗ − xiβ̂) =

specification error︷ ︸︸ ︷
Fi(z∗ − xiβ0)− Fi(z∗ − xiβ̂)

+ Fi(z∗ − xiβ̂)− F̂ si (z∗ − xiβ̂)︸ ︷︷ ︸
sampling error

(17)

Suppose that the empirical distribution is chosen for F̂i, as is the case in this paper. Then we
have F̂i −→ Fi on R uniformly almost surely, by the Glivenko-Cantelli Theorem, so that the
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“sampling error” term in (17) has probability limit 0.9 However, the “specification error”
term is likely to persist. If we further assume that the true cdf F is differentiable on R
(implying the existence of a density fui

), an application of the mean value theorem yields

Fi(z∗ − xiβ0)− Fi(z∗ − xβ̂) = fui
(y∗i,s)xi(β̂ − β0)

−→ fui
(y∞i )xi(θ − β0) (20)

(in probability), where θ = plims→∞ β̂, and y∞i ∈ [z∗ − xiβ0, z
∗ − xiθ]. There are therefore

two ways that the specification error term can vanish as s −→ ∞: one is for the first-stage
regression to yield consistent estimates of β0. The other is for fui

(y∞i ) to vanish for all
households i. This requires the assumption of finite upper or lower bounds to expenditure
(so that fui(y) = 0 for at least some y), and that {y∗∞ : household i is in area a} be disjoint
from the support of fui

(·). I doubt that either one of these conditions will hold in practice.

Thus we have

plim
s→∞

|µa − µ̂a| = plim
s→∞

∣∣∣∣∣
[

1
Na

Na∑
i=1

Fi(z∗ − xiβ0)− Fi(z∗ − xiβ̂)

]
+

[
1
Na

Na∑
i=1

Fi(z∗ − xiβ̂)− F̂ si (z∗ − xiβ̂)

]∣∣∣∣∣
=

∣∣∣∣∣plim
s→∞

[
1
Na

Na∑
i=1

Fi(z∗ − xiβ0)− Fi(z∗ − xiβ̂)

]

+ plim
s→∞

[
1
Na

Na∑
i=1

Fi(z∗ − xiβ̂)− F̂ si (z∗ − xiβ̂)

]∣∣∣∣∣
=

∣∣∣∣∣plim
s→∞

[
1
Na

Na∑
i=1

Fi(z∗ − xiβ0)− Fi(z∗ − xiβ̂)

]
+ 0

∣∣∣∣∣
=

∣∣∣∣∣ 1
Na

Na∑
i=1

fui(y
∞
i )xi(θ − β0)

∣∣∣∣∣ (21)

The magnitude of this asymptotic bias depends on several factors: the unknown error density
fui

(·); the marginal distribution of x in the area a; and the asymptotic bias of the first-stage
estimates, θ − β0. This dependence is probably the reason that ELL estimates are sensitive
to specification: including different regressors in x alters the direction and magnitude of
θ − β0. This is why a “good” model, in the sense that it has a high first-stage R2, does
not necessarily produce consistent estimates of the integrals of functions weighted by its
estimated conditional density.

9

Theorem 1 (Glivenko-Cantelli). Let (Xk)∞k=1 be an i.i.d. sequence of random variables. Denote by F (·)
the cumulative distribution function of each Xk. Then the random variable

∆n = sup
x∈R
|Fn(x)− F (x)| −→ 0 (18)

almost surely, where

Fn(x) =
1

n

nX
k=1

1{Xk≤x} (19)

is the empirical cdf based on the first n observations of the sequence.
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5 Conclusions

I have demonstrated that the point estimates themselves are heavily influenced by the choice
of model specification, and that this sensitivity operates not only at the area level but also at
the region level. In that the small-area estimates produced in this manner fail to respect the
reaggregation constraint imposed by the region-level headcount, these small-area estimates
actually destroy information.

I have also shown that the differences between the area- and region- level estimates generated
by at least one pair of admissible specifications cannot be plausibly blamed on sampling er-
ror, but instead indicate the presence of finite-sample bias. Moreover, the magnitude of this
bias is not small: I have shown that some specifications return estimates which are biased
by at least 19% in some areas. Finally, I have shown that this bias will not vanish in large
samples: ELL estimates will fail to consistently estimate the poverty headcount unless the
first-stage model yields consistent estimates of the conditional mean of expenditure.

A major attraction of the ELL method has been its apparent precision, i.e. the estimated
standard errors are usually quite low (in general, on the order of 0.02 for most areas), as long
as the location effect η is simulated at the cluster level. This has provoked a meta-literature
on the true size of the standard errors. My argument in this paper is quite different. In view
of the wide range of estimates that can be obtained by picking different specifications, and
given that at least some of these specifications lead to biased and inconsistent estimates, it is
not obvious - at least, not to me - what exactly the estimates generated by the ELL technique
represent. Since the choice of first-stage specification is pivotal for the final estimates, I find
it hard to assign any validity to the poverty maps in the literature. While of course some
of the small-area estimates may be approximately correct, I do not see a way to distinguish
between the areas for which the ELL estimates are likely to be close to the truth, and those
for which they are likely to be distant.

The lack of any kind of sensitivity analysis (with respect to specification) makes the situation
far worse. At the very least, the producers of poverty maps should include some discussion of
whether the rankings and point estimates are robust to alternative first-stage specifications.
The end-users of these poverty maps should be aware that the basis on which they are
allocating very large amounts of scarce funds is, to a large extent, the product of arbitrary
and unexamined methodological choices.
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A Further Details on the ELL Technique

A.1 Computations

Recall that there are two basic steps to the ELL technique: the estimation of a model of y|x,
and the numerical integration of W (·) with respect to the implied estimate of the conditional
density. Below I describe in more detail how to perform these calculations, as well as briefly
explaining (in section A.1.4) the way that the standard errors of ELL estimates are calculated.

First, though, I introduce some notation. Let K = dim(x), and define g : RK −→ R by

g(β|Xa) = E[W (y)|Xa]

=
∫

RNa

W (ya)f(ya|Xa, β)dya (22)

where f(y|Xa, β) is the true conditional density of the expenditure vector for area a.

If we simulate draws of β̂ from its true sampling distribution f(·|XR, β0), and the true
conditional density of ya|Xa is actually in the parametric family described by β, we would
get the estimate

µ̂a =
1
R

R∑
r=1

W (ỹr)

≈
∫

RK

g(β̃)f(β̃|XR, β0)dβ̃

= E
[
E
[
W (y)|X, β̂

]]
= h(β0|Xa,XR) (23)

where I have stressed that the (density of) the sampling distribution of β̂ depends on XR,
the matrix of observed covariates from the survey data at the region level.

A.1.1 Assumptions

The ELL technique proceeds from the following assumptions:

Assumption 1 (Exogeneity). The expenditure-generating process (for a given region) has
a conditional mean linear in the covariates, x:

yi = E[yi|xi] + ui

= xiβ0 + ui (24)

i.e. E[ui|xi] = 0 holds over i.

While of course the set of possible regressors is limited to those variables which are present
in both the survey and the census data, exactly which variables should be included in x is
almost never discussed, as I document in section A.3 below. To my knowledge, no poverty
mapping paper even discusses the problem of consistently estimating β0 (and some explicitly
spurn identification).
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Assumption 2 (Random Effects). The error term (for a given region) is the sum of two in-
dependent components: a “location effect”, ηc, and a household-specific error (“idiosyncratic
effect”), εch:

ui = ηc + εch (25)

(where household i is the hth one in cluster c).

Assumption 3 (Logistic-form Heteroskedasticity of ε).

Var[εi|xi] = A

(
exp[ziα]

1 + exp[ziα]

)
+B (26)

for some A > 0, B ≥ 0, α ∈ Rp and a p-dimensional vector z, which is a measurable function
of x.

Notice how the data-generating process described by (24) and (25) entails a homogeneity
assumption: the differences in the distribution of y between areas is attributable entirely to
the differences in the distribution of x. While this is probably untrue, as (Tar08) argues,
it is only important for my purposes insofar as it causes x to be endogenous. In fact, if we
think of area heterogeneity as arising from omitted area dummies and their interactions with
the household covariates, then the first stage-estimation of ELL (in step 1 below) is anal-
ogous to an inconsistent random-effects estimation when a fixed-effects model is appropriate.

A.1.2 Recreate the Conditional Distribution

Given the above assumptions on the data-generating process, (ELL03) suggests estimating
µa by the following steps:

1. Estimate β - by OLS or GLS - in the model

yi = xiβ + ui (27)

over the survey observations at the region level.

2. Use the covariates x to get fitted values ŷ = xβ̂ for all the census observations at the
area level.

3. Add simulated error terms ũr. (ELL03) suggests several options for the choice of dis-
tribution from which to draw ũr. Under the assumption that η ≡ 0, one could use the
empirical distribution of the OLS residuals.

If GLS estimation is used in step 1, one must estimate the cluster effects η and the
household-specific disturbances ε by demeaning the OLS residuals over the survey
clusters:

η̂c =
1
nc

nc∑
h=1

ûch (28)

ε̂ch = ûch − η̂c (29)
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Given the estimated household-specific errors, ε̂i, (ELL03) propose estimating the
model of the heteroskedasticity (26) by imposing

A = 1.05×max
c,h
{ê2
ch : 1 ≤ c ≤ C, 1 ≤ h ≤ nc}

B = 0

which implies (writing σ2
i for Var[εi|xi]),

log
(

σ2
i

A− σ2
i

)
= ziα (30)

Adding an exogenous error term ν to the right-hand side of (30) implies α can be
estimated from the regression

log
(

ε̂2
i

A− ε̂2
i

)
= ziα+ νi (31)

Rearranging (30) and neglecting terms which are O(h3) in a Taylor approximation of

σi =

√
A exp[ziα] exp[νi]

1 + exp[ziα] exp[νi]
(32)

about ν = 0 yields the estimated household-specific standard deviation

E [σi|zi] ≈
√

Aλ

1 + λ
+

1
2!

Var[ν] ·

[
1

2(1 + λ)2

√
Aλ

1 + λ

]
·

[
1− λ
1 + λ

√
Aλ

1 + λ
− 1

2

]
= σ̂i (33)

where λ = exp[ziα̂].10

Next, one normalizes the estimated idiosyncratic errors by dividing by the respective
σ̂i and demeaning them over the s survey observations, i.e.

ε̂∗i =
1
σ̂i
ε̂i −

1
s

s∑
i=1

ε̂i
σ̂i

(34)

Within the GLS framework, one can employ the presumed random-effects structure
of the data by simulating η and e∗ separately (since they are assumed independent of
one another), either from the empirical distributions or from a parametric distribution
scaled to have the same variance as the empirical distributions. (ELL03) suggests using
“standardized normal, t, or other distributions” for this purpose.

10Some authors expand σ2 about ν = 0, from which follows the formula:

bσ2
i ≈

Aλ

1 + λ
+

1

2!
Var[ν]

„
Aλ(1− λ)

(1 + λ)3

«
for the estimated idiosyncratic variance - for example,(LLED07), but this is incorrect since the nonlinearity

of σ =
√
σ2 means that

p
E[σ2] 6= E[σi], even though it is the latter that we need to use in standardizing

the residuals.

30



Regardless of the distribution from which the disturbances η̃c and ẽ∗ch are drawn, one
has to choose the level of aggregation at which to simulate η; choosing the cluster level
assigns a randomly drawn η̃rc to each census household n cluster c. On the other hand,
if one believes that there are “location effects” that apply at a higher level than the
cluster, one could choose to assign the same η̃r to each household in a larger group,
such as the small area level or at some intermediate level of aggregation, depending on
the geographical information available in the census.

A.1.3 Integrate With Respect to the Conditional Distribution

4. Repeat step 3 R times, obtaining R complete censuses of expenditure,

ỹr = xβ̂ + ũr

5. Perform Monte Carlo integration on W (ya), thus calculating

µ̃a =
1
R

R∑
r=1

W (ỹra)

≈
∫

RNa

W (y)f̂(y|Xa, β̂)dy

= ĝ(β̂|Xa) (35)

which is our estimate of µa at the “area” level. Here, f̂(y|Xa, β̂) is the density from
which the simulated values ỹr have been drawn.11

6. Because g is a nonlinear function of β, there would be some bias associated with the
evaluation of g(β̂), even if we knew the true conditional density. (ELL03) suggests that
“. . . using simulation to integrate over the model parameter estimates [β̂] . . . yields an
unbiased estimator.” That means that we should calculate the rth imputed value of
(log) expenditure for household i as:

ỹri = xiβ̃r +
(
η̃ri + σ̂iẽ

∗,r
i

)
(37)

Of course, in practice we have to use the asymptotic sampling distribution

β̃ ∼ N(β̂, âVar(β̂)) (38)

which we get from the first-stage regression (27). Denote by f̂a(·|XR) the density of the
presumed asymptotic sampling distribution of β̂; then what can actually be calculated
is not h(β̂|Xa,XR) as in (23), but

11Conditional on Xa, there is a one-to-one correspondence between densities for u and densities for y:

f(y|β,Xa) = fu(y −Xaβ) (36)

which we easily obtain from a change of variables u = y −Xaβ.
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µ̂a =
1
R

R∑
r=1

W (ỹr)

≈
∫

RK̂

g(β̃)f̂a(β̃|XR, β̂)dβ̃

= ĥ(β̂|Xa,XR) (39)

A.1.4 Estimate The Standard Errors

7. The standard error of µ̂, (ELL03) suggests, should be estimated by the standard devi-
ation of the simulated W (ỹra) over the R simulations:

ŝe(µ̂a) =

√√√√ 1
R

R∑
r=1

(W (ỹra)− µ̂a)2 (40)

If µ̂a is consistent for µa - remember, in this context, this means that µ̂a
p−→ µa as

the population size, Na, and as the survey sample size, s, grow without bound - then,
according to (ELL03), (40) is a consistent estimate of√

Var[W (ya)|Xa, β0] + Var[g(β̂)|Xa)] (41)

where we have neglected the “computational error” associated with numerical integra-
tion, since this error can be made arbitrarily small by choosing R as large as necessary.
The variances in (41) are with respect to the joint variability in the superpopulation
(over alternate realisations of the population) and in the survey sample (for a given
population).

A.2 Implementing ELL Requires Arbitrary Choices

There are several points at which the method outlined in (ELL03) allows for the individ-
ual researcher’s discretion. Specifically, anyone hoping to construct a poverty map by this
method must choose

(a) a first-stage estimation technique;

(b) a distribution from which to draw the residuals ũr;

(c) as part of the decision in (b), the level (cluster, area, or some intermediate level of
aggregation) at which to apply the simulated “cluster effect” η̃c;

(d) if GLS is chosen in the first-stage, and if the empirical distribution of the residuals
is chosen in (b), whether to draw the standardized household residuals ẽ∗ from the
clusters corresponding to the simulated cluster effects η̃ or from the full distribution
of the (cluster-demeaned) residuals;

(e) the number of simulations, R;
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(f) exactly which covariates x to use in the first-stage “prediction model”.

Given the breadth of discretion one must exercise before calculating µ̂a, it is easily possible
for two different researchers to obtain different estimates, even if they use the same data,
the same random-number generator with the same seed value, and the same number of
repetitions R.

A.3 What Can Properly Be Considered An “ELL” Estimate?

Since my aim in this paper is to examine the sensitivity and consistency of the estimates
produced by the ELL technique, I should ensure that my calculations are actually “ELL”
estimates. Given the diversity of possible implementations allowed by the original paper
(ELL03) I find it impossible to say definitively whether I have actually implemented the
technique that has come to be called “ELL” or merely a similar, but distinct, technique.
Instead, I have tried to ensure that my calculations conform to the standards of the existing
literature.

I reviewed some of the papers in the poverty mapping literature and tabulated their au-
thors’ choices with respect to the choice of first-stage estimation method, the distribution
from which to draw ũ, the level at which to apply the “location effect”, and the criteria used
in the specification of the first-stage model. The results are below, in Table 6.

In my reading of this literature, the primary requirement of the first-stage model appears to
be that it should have “predictive power,” which has been interpreted by the authors of the
method themselves and the World Bank poverty Mapping Team as “high first-stage R2”.
For example, we read in (LLED07):

OLS Regression results from the first-stage models are given in Appendix 2,
Tables A1-A10. Across the ten pseudo-surveys used here, the R2 ranges from
0.415-0.53 (see Table 1). The explanatory power of the models in this analysis
is in the general range of models from past applications. The R2 for models for
particular strata ranged from 0.45 to 0.77 in Ecuador . . . The explanatory power
achieved with the PROGRESA models is rather good given that the households in
the PROGRESA communities are more homogenous than those within a stratum
in a typical application.

In fact, some authors go so far as to explicitly dismiss concerns about the identification of
β0, as in (ABD+02):

The explanatory power of the nine regressions ranged from an adjusted R2 of
0.47 (Eastern Cape) to 0.72 (Free State), with the median adjusted R2 equal to
0.64.

. . . Finally, note that from a methodological standpoint it does not matter whether
these variables are exogenous.

or in (MB05)

Because our main interest is predicting the value of ln(y) rather than assessing
the impact of each explanatory variable, we are not concerned about the possible
endogeneity of some of the explanatory variables.
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The implicit argument here seems to be that if the first-stage model “predicts” y well in-
sample, as measured by the R2, then

(a) it will predict y well out-of-sample too, and so

(b) the simulated ỹ will be about right, at least over many simulations, and thus

(c) µ̂a = ĥ(β̂|Xa,XR) will be close to µa = g (β0|Xa).

I do not think that this argument really stands up to scrutiny. For one thing, area hetero-
geneity (i.e. intra-regional differences in β0) will tend to undermine the step from (a) to
(b), since the first-stage model may perform poorly in some areas but well on aggregate.
Secondly, even supposing that (conditional) area homogeneity holds, if x is endogenous, the
first-stage model will not yield consistent estimates of β0, and then there is no guarantee
that µ̂a is consistent for µa in any area a.

Most importantly, though, a high first-stage R2 is no guarantee of the consistent estimation
of β0. Unfortunately, as I argue in section 4.3, it is consistent estimation of β0, not the qual-
ity of the in-sample prediction, that matters for the accuracy of the second-stage estimates.

Although some papers assert that E[ui|xi] holds over i - such as (ELL03; ELL08) - most do
not. Yet, there is little or no attention devoted to building a case for the suitability of the
first stage model of consumption (or income) in any of the papers in this literature, as can
be seen in Table 6.
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B Further Results

B.1 Summary Statistics: First-Stage R2 Values

I have argued above that the poverty mapping literature imposes no restrictions on the
specification of the first-stage model other than it have a high R2 statistic. To show that
I really have obeyed the methodological prescriptions of the literature, I document the R2

values I obtained across all my estimations. Table 7 summarises these values over the 459
estimations (9 provinces × [50 random specifications +1 maximal model]) estimations from
section 4.1.

Province Mean Std. Dev. Min. Max.
Western Cape 0.5578 0.036 0.4903 0.6175
Eastern Cape 0.5885 0.0271 0.5215 0.6289

Northern Cape 0.5926 0.0376 0.442 0.6429
Free State 0.6154 0.0254 0.5536 0.6518

KwaZulu-Natal 0.5334 0.024 0.469 0.5743
North West 0.5780 0.0179 0.5387 0.6319

Gauteng 0.5600 0.0213 0.5173 0.6031
Mpumalanga 0.5472 0.0203 0.499 0.5886

Limpopo 0.5221 0.0218 0.4626 0.5644

Table 7: Summary Statistics: R2 Values Over Alternative Specifications

In section 4.2 I calculated 3600 (9 provinces × 200 bootstrap replications ×2 specifications)
ELL estimates. In Table 8, I display the summary statistics over those first-stage regressions,
broken down by province. The results are encouraging (at least, by the standards of the
poverty-mapping literature): all provinces have mean R2-values over 0.5, and no first-stage
model obtains an R2 lower than 0.47.

Specification 1 Specification 2
Province Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.
W Cape 0.5748 0.0105 0.5497 0.6038 0.5377 0.0119 0.4982 0.5712
E Cape 0.5808 0.0086 0.5591 0.6064 0.5801 0.0087 0.547 0.6044
N Cape 0.6212 0.0161 0.5820 0.6688 0.5958 0.017 0.5506 0.6417

Free State 0.6255 0.0102 0.5900 0.6625 0.624 0.0102 0.5940 0.6571
KwaZulu-Natal 0.5453 0.0097 0.5161 0.5710 0.5235 0.0099 0.4978 0.5546

North West 0.5713 0.0159 0.5315 0.6171 0.6102 0.0141 0.5752 0.6506
Gauteng 0.5765 0.0102 0.5416 0.6049 0.5308 0.0116 0.4963 0.5603

Mpumalanga 0.5598 0.0128 0.5263 0.5933 0.5167 0.0138 0.4708 0.5577
Limpopo 0.5112 0.0135 0.4759 0.545 0.5115 0.0128 0.4757 0.5505

Table 8: R2 Over 200 Bootstrap Repetitions, by Province
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B.2 Sensitivity: Area Headcount

Magisterial District HC (maximal) Mean Min Max Range IQR
Murraysburg 0.369 0.325 0.186 0.485 0.298 0.087

Uniondale 0.327 0.319 0.218 0.498 0.279 0.079
Calitzdorp 0.286 0.286 0.215 0.406 0.191 0.053

Prince Albert 0.275 0.275 0.188 0.428 0.240 0.054
Robertson 0.261 0.262 0.189 0.376 0.187 0.056

Swellendam 0.244 0.226 0.154 0.327 0.174 0.055
Van Rhynsdorp 0.236 0.210 0.139 0.289 0.150 0.072

Laingsburg 0.215 0.230 0.157 0.368 0.211 0.069
Worcester 0.198 0.190 0.120 0.290 0.170 0.045
Vredendal 0.191 0.212 0.142 0.370 0.228 0.047
Knysna 0.184 0.168 0.116 0.245 0.130 0.036

Moorreesburg 0.181 0.187 0.125 0.257 0.132 0.048
Hopefield 0.177 0.142 0.082 0.196 0.114 0.035
Montagu 0.174 0.175 0.115 0.278 0.163 0.049

Clanwilliam 0.169 0.193 0.124 0.310 0.186 0.051
Tulbagh 0.166 0.167 0.108 0.302 0.194 0.043
Riversdal 0.165 0.174 0.113 0.300 0.187 0.044
Caledon 0.163 0.175 0.114 0.256 0.143 0.049

Beaufort West 0.151 0.171 0.094 0.324 0.230 0.042
Ceres 0.149 0.174 0.113 0.299 0.186 0.051

Heidelberg 0.146 0.188 0.117 0.352 0.235 0.038
Oudtshoorn 0.146 0.137 0.072 0.242 0.171 0.038
Ladismith 0.138 0.170 0.093 0.287 0.194 0.062

George 0.134 0.135 0.093 0.209 0.116 0.042
Mitchellsplain 0.126 0.143 0.095 0.223 0.128 0.045

Piketberg 0.124 0.146 0.089 0.254 0.165 0.053
Mossel bay 0.122 0.126 0.071 0.177 0.106 0.037
Stellenbosch 0.119 0.110 0.058 0.169 0.111 0.032
Bredasdorp 0.114 0.121 0.065 0.178 0.113 0.038
Hermanus 0.112 0.122 0.075 0.175 0.101 0.030
Wellington 0.094 0.099 0.064 0.153 0.089 0.035

Paarl 0.092 0.114 0.067 0.190 0.123 0.041
Malmesbury 0.088 0.101 0.060 0.146 0.086 0.024

Strand 0.086 0.091 0.045 0.135 0.090 0.034
Goodwood 0.075 0.066 0.032 0.107 0.075 0.021
Kuilsrivier 0.064 0.070 0.040 0.116 0.076 0.023
Vredenburg 0.063 0.082 0.042 0.137 0.094 0.025
Simonstown 0.053 0.063 0.039 0.098 0.059 0.023

Somerset West 0.052 0.055 0.022 0.083 0.061 0.022
Bellville 0.038 0.036 0.014 0.069 0.055 0.018

Cape 0.032 0.043 0.026 0.070 0.044 0.014
Wynberg 0.027 0.031 0.011 0.073 0.062 0.014

Table 9: Estimates Over 50 Random Specifications, W Cape

37



Magisterial District HC (maximal) Mean Min Max Range IQR
Mqanduli 0.656 0.609 0.509 0.696 0.187 0.049
Elliotdale 0.638 0.647 0.557 0.726 0.168 0.054
Tabankulu 0.636 0.608 0.547 0.686 0.139 0.044
Flagstaff 0.634 0.617 0.535 0.700 0.164 0.061
Kentani 0.625 0.609 0.541 0.685 0.144 0.044

Umzimkulu 0.614 0.585 0.509 0.715 0.206 0.047
Cala 0.605 0.581 0.521 0.677 0.156 0.047

Lusikisiki 0.602 0.594 0.531 0.676 0.145 0.051
Ngqueleni 0.599 0.608 0.526 0.692 0.167 0.050
Engcobo 0.594 0.591 0.536 0.669 0.133 0.039
Qumbu 0.584 0.583 0.504 0.676 0.172 0.051

Middeldrift 0.578 0.571 0.499 0.675 0.176 0.064
Tsomo 0.575 0.597 0.488 0.710 0.222 0.047

Mt Fletcher 0.574 0.598 0.512 0.689 0.177 0.049
Cofimvaba 0.573 0.574 0.516 0.643 0.127 0.039

Bizana 0.571 0.577 0.464 0.677 0.213 0.059
Libode 0.570 0.586 0.522 0.681 0.159 0.056

Mt Ayliff 0.565 0.581 0.522 0.720 0.197 0.062
Mt Frere 0.565 0.564 0.494 0.665 0.171 0.065
Maluti 0.565 0.573 0.497 0.682 0.185 0.061

Idutywa 0.563 0.573 0.485 0.664 0.178 0.056
Nqamakwe 0.557 0.559 0.466 0.684 0.218 0.064
Willowvale 0.557 0.582 0.516 0.670 0.154 0.062

Tsolo 0.553 0.566 0.485 0.640 0.155 0.052
Pearston 0.550 0.517 0.359 0.611 0.252 0.051
Mpofu 0.546 0.524 0.397 0.686 0.290 0.114

Port St Johns 0.535 0.573 0.506 0.638 0.132 0.064
Lady Frere 0.503 0.508 0.444 0.558 0.114 0.037
Steytlerville 0.501 0.464 0.372 0.553 0.181 0.060

Umtata 0.489 0.477 0.430 0.538 0.108 0.036
Hofmeyer 0.484 0.490 0.384 0.584 0.200 0.067

Ntabathemba 0.475 0.452 0.376 0.575 0.199 0.050
Sterkspruit 0.471 0.509 0.424 0.594 0.171 0.053

Maclear 0.465 0.486 0.401 0.586 0.186 0.070
Bedford 0.458 0.461 0.365 0.577 0.212 0.050
Hankey 0.458 0.413 0.317 0.544 0.227 0.067

Wodehouse 0.457 0.454 0.380 0.528 0.148 0.057
Victoria East 0.457 0.439 0.380 0.534 0.154 0.056
Sterkstroom 0.455 0.451 0.353 0.533 0.180 0.050

Peddie 0.452 0.465 0.383 0.542 0.159 0.046
Keiskammahoek 0.443 0.451 0.335 0.601 0.265 0.088

Barkley-East 0.437 0.446 0.376 0.508 0.132 0.057
Steynsburg 0.434 0.442 0.362 0.546 0.185 0.061

Komga 0.434 0.499 0.366 0.632 0.266 0.078
Butterworth 0.427 0.426 0.348 0.515 0.167 0.059

Adelaide 0.427 0.411 0.310 0.510 0.200 0.063
Hewu 0.412 0.418 0.343 0.481 0.138 0.059

Continued on next page. . .
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Table 10 (continued from previous page)
Magisterial District HC (maximal) Mean Min Max Range IQR

Jansenville 0.408 0.416 0.353 0.510 0.157 0.064
Lady Grey 0.403 0.450 0.391 0.533 0.142 0.029
Stutterheim 0.398 0.413 0.306 0.506 0.200 0.063
Willowmore 0.395 0.395 0.282 0.493 0.212 0.089
Zwelitsha 0.394 0.432 0.343 0.523 0.180 0.087

Alexandria 0.388 0.419 0.357 0.508 0.150 0.064
Somerset East 0.384 0.400 0.337 0.486 0.149 0.037

Bathurst 0.377 0.393 0.293 0.501 0.208 0.045
Kirkwood 0.373 0.398 0.326 0.502 0.176 0.065
Molteno 0.372 0.390 0.296 0.466 0.170 0.066
Tarka 0.365 0.409 0.305 0.503 0.198 0.050

Fort Beaufort 0.364 0.378 0.298 0.479 0.180 0.065
Cradock 0.358 0.362 0.298 0.417 0.120 0.047
Albert 0.353 0.365 0.316 0.419 0.103 0.034

Cathcart 0.337 0.347 0.270 0.428 0.157 0.050
Indwe 0.335 0.367 0.285 0.452 0.168 0.044
Elliot 0.327 0.349 0.284 0.424 0.140 0.056

Venterstad 0.326 0.336 0.272 0.411 0.139 0.056
Aberdeen 0.325 0.329 0.229 0.418 0.189 0.057

Aliwal North 0.315 0.319 0.253 0.401 0.148 0.046
East-London 0.294 0.310 0.248 0.385 0.137 0.037
Mdantsane 0.292 0.303 0.249 0.369 0.120 0.035
Joubertina 0.286 0.353 0.250 0.471 0.221 0.065

Humansdorp 0.279 0.277 0.184 0.380 0.196 0.051
Queenstown 0.241 0.244 0.189 0.318 0.129 0.042

Albany 0.238 0.272 0.207 0.390 0.183 0.040
Middelburg 0.237 0.245 0.201 0.320 0.118 0.046

Graaff-Reinet 0.229 0.242 0.174 0.330 0.156 0.043
Uitenhage 0.203 0.233 0.181 0.300 0.119 0.031

Port Elizabeth 0.166 0.189 0.138 0.275 0.137 0.030
King William’s Town 0.113 0.143 0.105 0.217 0.112 0.030

Table 10: Estimates Over 50 Random Specifications, E Cape

Magisterial District HC (maximal) Mean Min Max Range IQR
Noupoort 0.598 0.569 0.439 0.697 0.258 0.060
Warrenton 0.533 0.508 0.380 0.606 0.226 0.071
Hanover 0.516 0.467 0.259 0.647 0.388 0.082

Philipstown 0.472 0.431 0.299 0.522 0.223 0.062
Fraserburg 0.454 0.449 0.326 0.567 0.241 0.088
Richmond 0.444 0.467 0.395 0.537 0.142 0.058

Barkley-West 0.414 0.378 0.287 0.499 0.212 0.076
Prieska 0.400 0.380 0.294 0.462 0.168 0.053

Williston 0.376 0.358 0.275 0.472 0.197 0.054
Hartswater 0.369 0.403 0.323 0.528 0.204 0.043
Britstown 0.364 0.351 0.259 0.459 0.200 0.055

Continued on next page. . .
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Table 11 (continued from previous page)
Magisterial District HC (maximal) Mean Min Max Range IQR

Calvinia 0.363 0.335 0.238 0.426 0.188 0.059
Hopetown 0.360 0.369 0.254 0.515 0.261 0.083
Herbert 0.359 0.351 0.257 0.444 0.187 0.063

Sutherland 0.337 0.357 0.255 0.537 0.282 0.075
Kenhardt 0.287 0.302 0.197 0.415 0.218 0.076
Kuruman 0.287 0.331 0.252 0.458 0.206 0.069

Victoria-West 0.287 0.293 0.154 0.462 0.308 0.087
Carnarvon 0.287 0.314 0.222 0.440 0.218 0.081

Postmasburg 0.283 0.309 0.222 0.442 0.220 0.068
Hay 0.272 0.309 0.218 0.450 0.231 0.071

De Aar 0.268 0.281 0.184 0.403 0.219 0.056
Colesberg 0.246 0.299 0.202 0.414 0.212 0.048
Gordonia 0.241 0.256 0.177 0.391 0.214 0.052
Kimberley 0.203 0.233 0.174 0.338 0.164 0.044

Namakwaland 0.077 0.114 0.040 0.225 0.185 0.054
Table 11: Estimates Over 50 Random Specifications, N Cape

Magisterial District HC (maximal) Mean Min Max Range IQR
Koppies 0.622 0.604 0.500 0.691 0.192 0.053

Smithfield 0.568 0.550 0.458 0.604 0.147 0.040
Hoopstad 0.567 0.533 0.440 0.625 0.186 0.035
Vredefort 0.567 0.551 0.463 0.620 0.157 0.049

Boshof 0.565 0.552 0.473 0.634 0.161 0.048
Jacobsdal 0.564 0.533 0.467 0.607 0.140 0.055

Viljoenskroon 0.564 0.521 0.448 0.596 0.148 0.041
Ficksburg 0.545 0.578 0.456 0.715 0.258 0.090

Trompsburg 0.536 0.499 0.430 0.594 0.163 0.047
Dewetsdorp 0.524 0.504 0.417 0.609 0.192 0.042
Marquard 0.524 0.530 0.465 0.611 0.146 0.054
Clocolan 0.520 0.506 0.433 0.549 0.116 0.050

Wesselsbron 0.519 0.523 0.450 0.592 0.142 0.045
Reitz 0.519 0.526 0.464 0.608 0.144 0.051

Senekal 0.519 0.515 0.448 0.586 0.138 0.042
Heilbron 0.518 0.520 0.434 0.601 0.167 0.048
Frankfort 0.517 0.487 0.421 0.619 0.198 0.038
Bothaville 0.511 0.515 0.441 0.611 0.170 0.058

Fouriesburg 0.509 0.528 0.448 0.636 0.189 0.062
Bultfontein 0.499 0.493 0.427 0.571 0.144 0.042
Theunissen 0.499 0.485 0.418 0.575 0.158 0.038
Ventersburg 0.491 0.476 0.405 0.543 0.138 0.047
Brandfort 0.484 0.491 0.408 0.549 0.141 0.048
Petrusburg 0.482 0.489 0.424 0.569 0.145 0.054

Vrede 0.481 0.527 0.432 0.648 0.216 0.052
Excelsior 0.477 0.471 0.402 0.592 0.190 0.051

Harrismith 0.476 0.471 0.392 0.539 0.147 0.046
Continued on next page. . .
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Table 12 (continued from previous page)
Magisterial District HC (maximal) Mean Min Max Range IQR

Philippolis 0.476 0.472 0.391 0.538 0.148 0.038
Wepener 0.471 0.471 0.412 0.568 0.156 0.041

Fauresmith 0.469 0.484 0.373 0.567 0.194 0.059
Lindley 0.467 0.476 0.382 0.550 0.168 0.037
Zastron 0.457 0.473 0.378 0.579 0.201 0.060

Witsieshoek 0.454 0.508 0.396 0.633 0.238 0.065
Winburg 0.444 0.441 0.393 0.537 0.144 0.041

Jagersfontein 0.441 0.457 0.339 0.528 0.190 0.051
Ladybrand 0.434 0.442 0.392 0.551 0.159 0.043
Edenburg 0.434 0.434 0.378 0.527 0.148 0.045
Rouxville 0.429 0.470 0.387 0.560 0.174 0.058

Reddersburg 0.425 0.418 0.340 0.501 0.161 0.062
Bethlehem 0.422 0.410 0.349 0.488 0.139 0.038

Koffiefontein 0.411 0.398 0.342 0.494 0.152 0.048
Parys 0.409 0.406 0.324 0.512 0.188 0.068

Botshabelo 0.408 0.386 0.287 0.476 0.189 0.078
Thaba ’Nchu 0.395 0.431 0.336 0.534 0.198 0.062
Hennenman 0.386 0.370 0.304 0.451 0.147 0.044
Kroonstad 0.362 0.353 0.300 0.418 0.118 0.048

Odendaalsrus 0.359 0.370 0.295 0.474 0.179 0.045
Bethulie 0.354 0.384 0.312 0.441 0.128 0.032
Virginia 0.305 0.295 0.193 0.369 0.176 0.063
Welkom 0.291 0.280 0.218 0.344 0.126 0.045

Sasolburg 0.288 0.302 0.241 0.374 0.133 0.035
Bloemfontein 0.247 0.242 0.185 0.300 0.115 0.028

Table 12: Estimates Over 50 Random Specifications, Free State

Magisterial District HC (maximal) Mean Min Max Range IQR
Weenen 0.600 0.541 0.423 0.620 0.197 0.079
Ngotshe 0.571 0.509 0.335 0.673 0.338 0.093

Underberg 0.482 0.454 0.340 0.591 0.251 0.033
Utrecht 0.446 0.420 0.324 0.626 0.302 0.072

Paulpietersburg 0.411 0.379 0.221 0.569 0.349 0.131
Kranskop 0.406 0.381 0.255 0.538 0.283 0.065

Mount Currie 0.383 0.382 0.316 0.483 0.167 0.042
New Hanover 0.383 0.363 0.261 0.461 0.200 0.049

Msinga 0.364 0.364 0.299 0.450 0.151 0.036
Polela 0.363 0.306 0.222 0.373 0.151 0.062

Mthonjaneni 0.353 0.309 0.242 0.474 0.232 0.058
Ixopo 0.351 0.351 0.256 0.445 0.190 0.048
Alfred 0.346 0.323 0.243 0.396 0.153 0.044

Nkandla 0.338 0.317 0.235 0.419 0.184 0.047
Mooi river 0.321 0.323 0.217 0.465 0.249 0.081

Umvoti 0.319 0.327 0.269 0.380 0.111 0.038
Richmond 0.319 0.326 0.220 0.430 0.210 0.081

Continued on next page. . .
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Table 13 (continued from previous page)
Magisterial District HC (maximal) Mean Min Max Range IQR

Babanango 0.305 0.299 0.221 0.410 0.189 0.052
Umzinto 0.301 0.292 0.237 0.371 0.134 0.036

Lower Tugela 0.293 0.282 0.215 0.343 0.128 0.043
Simdlangentsha 0.286 0.266 0.196 0.371 0.175 0.042

Nongoma 0.285 0.265 0.189 0.358 0.168 0.051
Vryheid 0.283 0.272 0.213 0.357 0.144 0.058
Nqutu 0.282 0.265 0.213 0.345 0.132 0.032

Mhlabathini 0.266 0.258 0.178 0.343 0.165 0.046
Mapumulo 0.263 0.257 0.214 0.324 0.110 0.041
Bergville 0.244 0.235 0.179 0.306 0.127 0.033
Estcourt 0.243 0.222 0.159 0.305 0.146 0.038
Ubombo 0.236 0.261 0.198 0.401 0.203 0.037
Eshowe 0.232 0.227 0.187 0.267 0.081 0.027

Kliprivier 0.231 0.246 0.202 0.315 0.113 0.038
Impendle 0.225 0.232 0.174 0.326 0.152 0.052
Dundee 0.218 0.227 0.176 0.286 0.110 0.038

Dannhauser 0.217 0.209 0.141 0.296 0.155 0.044
Hlabisa 0.208 0.231 0.182 0.319 0.137 0.042

Ndwedwe 0.198 0.197 0.144 0.280 0.136 0.042
Ingwavuma 0.192 0.234 0.169 0.328 0.159 0.043
Umbumbulu 0.187 0.188 0.134 0.275 0.141 0.050

Port Shepstone 0.181 0.182 0.136 0.240 0.104 0.032
Inanda 0.173 0.171 0.125 0.243 0.118 0.038

Mtunzini 0.167 0.176 0.130 0.243 0.114 0.026
Glencoe 0.165 0.184 0.122 0.270 0.148 0.040

Lions River 0.160 0.168 0.115 0.239 0.124 0.031
Lower Umfolozi 0.158 0.157 0.116 0.238 0.122 0.035

Newcastle 0.157 0.149 0.096 0.237 0.141 0.028
Umlazi 0.154 0.137 0.079 0.193 0.115 0.033

Camperdown 0.145 0.166 0.117 0.235 0.117 0.037
Pietermaritzburg 0.136 0.133 0.086 0.182 0.096 0.028

Pinetown 0.096 0.108 0.078 0.146 0.067 0.021
Durban 0.069 0.062 0.043 0.081 0.038 0.014

Chatswoth 0.061 0.068 0.042 0.098 0.057 0.019
Table 13: Estimates Over 50 Random Specifications, KwaZulu-
Natal

Magisterial District HC (maximal) Mean Min Max Range IQR
Bronkhorstspruit 0.320 0.305 0.221 0.376 0.155 0.045

Nigel 0.212 0.185 0.099 0.247 0.149 0.033
Cullinan 0.193 0.208 0.103 0.326 0.223 0.056

Oberholzer 0.186 0.176 0.085 0.253 0.168 0.052
Westonaria 0.173 0.160 0.074 0.217 0.143 0.058
Heidelberg 0.172 0.189 0.123 0.297 0.175 0.046

Vanderbijlpark 0.150 0.127 0.082 0.190 0.108 0.024
Continued on next page. . .
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Table 14 (continued from previous page)
Magisterial District HC (maximal) Mean Min Max Range IQR

Randfontein 0.140 0.156 0.092 0.213 0.121 0.031
Vereeniging 0.133 0.126 0.079 0.186 0.107 0.029

Brakpan 0.131 0.126 0.076 0.175 0.099 0.026
Benoni 0.129 0.125 0.089 0.162 0.073 0.029

Randburg 0.119 0.107 0.079 0.138 0.058 0.016
Soshanguve 0.119 0.132 0.063 0.215 0.153 0.038

Alberton 0.113 0.104 0.074 0.157 0.083 0.022
Kempton Park 0.111 0.108 0.073 0.146 0.072 0.027
Krugersdorp 0.102 0.107 0.070 0.146 0.075 0.015

Boksburg 0.089 0.079 0.051 0.104 0.054 0.022
Springs 0.084 0.068 0.049 0.129 0.080 0.016

Wonderboom 0.081 0.083 0.063 0.117 0.054 0.015
Roodepoort 0.079 0.072 0.044 0.094 0.050 0.017

Johannesburg 0.060 0.055 0.029 0.080 0.051 0.008
Soweto 0.048 0.065 0.025 0.120 0.095 0.030

Germiston 0.047 0.051 0.022 0.083 0.061 0.012
Pretoria 0.047 0.035 0.022 0.046 0.024 0.008

Table 14: Estimates Over 50 Random Specifications, Gauteng

Magisterial District HC (maximal) Mean Min Max Range IQR
Carolina 0.651 0.601 0.390 0.723 0.334 0.097

Eerstehoek 0.597 0.526 0.360 0.641 0.282 0.081
Bethal 0.580 0.514 0.340 0.658 0.318 0.103

Waterval Boven 0.507 0.478 0.345 0.543 0.198 0.062
Amersfoort 0.433 0.402 0.242 0.591 0.349 0.103

Ermelo 0.403 0.397 0.227 0.528 0.301 0.078
Balfour 0.347 0.305 0.190 0.412 0.222 0.072
Belfast 0.330 0.347 0.187 0.499 0.313 0.109

Standerton 0.323 0.339 0.232 0.437 0.205 0.078
Nkomazi 0.307 0.315 0.160 0.453 0.294 0.097
Moretele 0.299 0.273 0.148 0.415 0.266 0.083
Volksrust 0.294 0.293 0.224 0.367 0.143 0.048

Wakkerstroom 0.282 0.291 0.191 0.462 0.271 0.091
Lydenburg 0.281 0.306 0.213 0.473 0.260 0.062
Piet Retief 0.272 0.334 0.213 0.523 0.310 0.095

Pelgrimsrust 0.258 0.270 0.183 0.392 0.209 0.069
Nsikazi 0.252 0.231 0.147 0.298 0.152 0.043

Groblersdal 0.251 0.226 0.143 0.308 0.165 0.050
Barberton 0.235 0.269 0.157 0.394 0.236 0.081
Witbank 0.187 0.192 0.127 0.278 0.151 0.051

Middelburg 0.181 0.167 0.109 0.241 0.132 0.039
Hoäveldrif 0.171 0.205 0.123 0.297 0.174 0.041
Witrivier 0.159 0.168 0.107 0.253 0.146 0.060

Kwamhlanga 0.153 0.163 0.068 0.352 0.284 0.153
Delmas 0.153 0.189 0.105 0.294 0.190 0.057

Continued on next page. . .
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Table 15 (continued from previous page)
Magisterial District HC (maximal) Mean Min Max Range IQR

Nelspruit 0.146 0.151 0.087 0.224 0.138 0.040
Kriel 0.117 0.085 0.007 0.228 0.221 0.087

Mbibana 0.111 0.101 0.025 0.247 0.223 0.065
Mdutjana 0.089 0.114 0.055 0.191 0.136 0.041
Mkobola 0.070 0.066 0.029 0.159 0.131 0.038
Moutse 0.039 0.083 0.025 0.252 0.227 0.065

Table 15: Estimates Over 50 Random Specifications, Mpumalanga

Magisterial District HC (maximal) Mean Min Max Range IQR
Letaba 0.641 0.596 0.450 0.741 0.292 0.073
Messina 0.567 0.470 0.363 0.600 0.237 0.085
Mhala 0.541 0.468 0.343 0.559 0.215 0.058

Bolobedu 0.455 0.385 0.260 0.514 0.254 0.113
Sekhukhuneland 0.442 0.402 0.265 0.495 0.230 0.058

Mapulaneng 0.433 0.415 0.262 0.524 0.262 0.086
Bochum 0.409 0.376 0.233 0.510 0.277 0.101

Mokerong 0.397 0.379 0.277 0.471 0.194 0.062
Seshego 0.359 0.335 0.228 0.409 0.181 0.064

Thabamoopo 0.334 0.300 0.179 0.415 0.237 0.060
Nebo 0.330 0.341 0.238 0.439 0.202 0.039

Sekgosese 0.321 0.351 0.215 0.541 0.327 0.084
Soutpansberg 0.316 0.315 0.205 0.426 0.221 0.072

Mutali 0.311 0.347 0.193 0.494 0.301 0.114
Dzanani 0.280 0.311 0.148 0.478 0.329 0.109

Phalaborwa 0.279 0.258 0.159 0.337 0.178 0.062
Warmbad 0.273 0.323 0.212 0.472 0.260 0.099

Ritavi 0.261 0.263 0.181 0.333 0.152 0.061
Thabazimbi 0.232 0.334 0.244 0.485 0.241 0.084

Vuwani 0.232 0.251 0.164 0.337 0.173 0.040
Malamulela 0.230 0.261 0.161 0.435 0.275 0.102
Hlanganani 0.221 0.231 0.134 0.359 0.225 0.080

Potgietersrus 0.214 0.308 0.201 0.482 0.281 0.104
Namakgale 0.205 0.213 0.127 0.338 0.211 0.062
Waterberg 0.190 0.262 0.109 0.520 0.410 0.113
Lulekani 0.189 0.234 0.131 0.333 0.202 0.073

Thohoyandou 0.180 0.198 0.115 0.284 0.169 0.055
Naphuno 0.175 0.207 0.126 0.338 0.212 0.063

Pietersburg 0.163 0.172 0.106 0.251 0.145 0.043
Giyani 0.136 0.172 0.070 0.347 0.277 0.083
Ellisras 0.089 0.152 0.079 0.287 0.208 0.068

Table 16: Estimates Over 50 Random Specifications, Limpopo

B.3 Sensitivity: Rankings
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Magisterial District Rank (maximal) Mean Min Max Range IQR
Murraysburg 1 2.4 1 9 8 2

Uniondale 2 2.4 1 7 6 2
Calitzdorp 3 3.5 1 7 6 2

Prince Albert 4 4.8 1 17 16 2
Robertson 5 4.9 1 12 11 3

Swellendam 6 7.5 1 14 13 3
Van Rhynsdorp 7 10.2 4 19 15 6

Laingsburg 8 8.9 1 22 21 7
Worcester 9 12.9 5 22 17 7
Vredendal 10 9.6 3 21 18 4
Knysna 11 17.2 10 26 16 5

Moorreesburg 12 13.6 5 30 25 7
Hopefield 13 23.0 12 34 22 6
Montagu 14 15.8 7 25 18 7

Clanwilliam 15 12.1 4 20 16 4
Tulbagh 16 17.8 8 32 24 8
Riversdal 17 15.8 8 24 16 7
Caledon 18 15.8 8 23 15 7

Beaufort West 19 17.2 7 30 23 9
Ceres 20 16.4 6 28 22 7

Heidelberg 21 13.9 4 28 24 8
Oudtshoorn 22 24.6 14 32 18 6
Ladismith 23 17.6 5 29 24 12

George 24 24.5 18 30 12 4
Mitchellsplain 25 23.1 14 31 17 7

Piketberg 26 22.4 13 31 18 6
Mossel bay 27 26.6 18 33 15 5
Stellenbosch 28 30.0 22 36 14 3
Bredasdorp 29 27.6 18 34 16 5
Hermanus 30 27.4 20 34 14 5
Wellington 31 32.2 23 37 14 3

Paarl 32 29.5 22 34 12 3
Malmesbury 33 31.8 25 36 11 3

Strand 34 33.6 28 37 9 2
Goodwood 35 36.7 32 39 7 2
Kuilsrivier 36 36.3 32 40 8 1
Vredenburg 37 35.0 30 39 9 2
Simonstown 38 37.4 35 40 5 1

Somerset West 39 38.5 35 41 6 1
Bellville 40 41.1 40 42 2 1

Cape 41 40.1 39 41 2 0
Wynberg 42 41.6 35 42 7 1

Table 17: Within-Province Rankings Over 50 Random Specifica-
tions, W Cape
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Magisterial District Rank (maximal) Mean Min Max Range IQR
Mqanduli 1 8.6 1 28 27 9
Elliotdale 2 3.0 1 16 15 2
Tabankulu 3 7.7 2 20 18 6
Flagstaff 4 6.4 1 19 18 5
Kentani 5 8.2 1 22 21 8

Umzimkulu 6 14.1 1 29 28 10
Cala 7 15.1 1 30 29 10

Lusikisiki 8 11.6 1 24 23 9
Ngqueleni 9 8.6 1 24 23 10
Engcobo 10 12.5 2 26 24 11
Qumbu 11 14.3 3 28 25 11

Middeldrift 12 17.5 2 29 27 12
Tsomo 13 11.0 1 32 31 11

Mt Fletcher 14 10.7 1 26 25 9
Cofimvaba 15 17.2 3 28 25 10

Bizana 16 15.9 2 35 33 11
Libode 17 13.8 3 24 21 10

Mt Ayliff 18 15.7 1 26 25 9
Mt Frere 19 20.1 6 30 24 8
Maluti 20 17.7 3 32 29 9

Idutywa 21 17.6 4 31 27 10
Nqamakwe 22 20.7 4 37 33 10
Willowvale 23 15.2 2 26 24 9

Tsolo 24 18.9 5 29 24 9
Pearston 25 28.0 11 58 47 6
Mpofu 26 25.9 1 54 53 18

Port St Johns 27 17.6 5 29 24 9
Lady Frere 28 29.7 18 48 30 6
Steytlerville 29 37.6 27 53 26 10

Umtata 30 34.6 29 42 13 5
Hofmeyer 31 32.4 18 51 33 7

Ntabathemba 32 41.1 12 57 45 16
Sterkspruit 33 29.4 9 42 33 5

Maclear 34 32.9 8 56 48 8
Bedford 35 38.0 27 57 30 11
Hankey 36 49.5 30 66 36 12

Wodehouse 37 40.0 27 56 29 13
Victoria East 38 43.8 28 57 29 12
Sterkstroom 39 40.6 20 59 39 13

Peddie 40 37.9 27 58 31 8
Keiskammahoek 41 42.0 22 65 43 20

Barkley-East 42 41.3 30 58 28 7
Steynsburg 43 43.4 26 61 35 17

Komga 44 31.0 13 56 43 10
Butterworth 45 47.1 32 62 30 8

Adelaide 46 49.6 34 64 30 10
Hewu 47 48.8 31 63 32 11

Continued on next page. . .

46



Table 18 (continued from previous page)
Magisterial District Rank (maximal) Mean Min Max Range IQR

Jansenville 48 48.7 34 67 33 11
Lady Grey 49 41.0 32 54 22 9
Stutterheim 50 49.4 35 68 33 15
Willowmore 51 53.2 37 69 32 12
Zwelitsha 52 45.1 30 61 31 12

Alexandria 53 47.4 34 60 26 12
Somerset East 54 52.4 40 64 24 9

Bathurst 55 53.8 35 73 38 11
Kirkwood 56 53.0 38 65 27 10
Molteno 57 54.0 36 70 34 10
Tarka 58 50.1 37 70 33 9

Fort Beaufort 59 57.2 36 72 36 8
Cradock 60 60.2 45 70 25 5
Albert 61 59.8 46 70 24 6

Cathcart 62 62.5 41 71 30 5
Indwe 63 59.2 46 69 23 7
Elliot 64 62.3 49 70 21 5

Venterstad 65 64.4 52 72 20 6
Aberdeen 66 64.8 44 73 29 6

Aliwal North 67 66.8 54 73 19 4
East-London 68 68.0 62 72 10 3
Mdantsane 69 68.8 62 75 13 3
Joubertina 70 61.2 46 72 26 8

Humansdorp 71 71.1 63 76 13 3
Queenstown 72 74.0 71 77 6 2

Albany 73 71.4 66 76 10 3
Middelburg 74 73.7 68 76 8 2

Graaff-Reinet 75 73.8 70 77 7 3
Uitenhage 76 74.7 72 76 4 2

Port Elizabeth 77 76.9 75 78 3 0
King William’s Town 78 78.0 77 78 1 0

Table 18: Within-Province Rankings Over 50 Random Specifica-
tions, E Cape

Magisterial District Rank (maximal) Mean Min Max Range IQR
Noupoort 1 1.4 1 4 3 1
Warrenton 2 2.9 1 9 8 2
Hanover 3 5.2 1 23 22 3

Philipstown 4 6.9 2 20 18 4
Fraserburg 5 5.6 2 15 13 4
Richmond 6 4.2 2 7 5 2

Barkley-West 7 10.9 4 24 20 6
Prieska 8 10.7 4 20 16 5

Williston 9 12.8 6 21 15 5
Hartswater 10 8.2 3 14 11 3

Continued on next page. . .
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Table 19 (continued from previous page)
Magisterial District Rank (maximal) Mean Min Max Range IQR

Britstown 11 13.3 5 23 18 6
Calvinia 12 15.0 6 24 18 6

Hopetown 13 12.3 2 23 21 7
Herbert 14 13.1 5 25 20 4

Sutherland 15 12.8 2 24 22 5
Kenhardt 16 18.2 7 25 18 9
Kuruman 17 15.4 7 22 15 7

Victoria-West 18 18.9 4 26 22 8
Carnarvon 19 17.3 3 24 21 7

Postmasburg 20 17.2 9 24 15 6
Hay 21 17.5 5 24 19 5

De Aar 22 20.4 14 25 11 5
Colesberg 23 18.6 10 24 14 5
Gordonia 24 22.4 16 26 10 3
Kimberley 25 23.9 16 25 9 2

Namakwaland 26 26.0 25 26 1 0
Table 19: Within-Province Rankings Over 50 Random Specifica-
tions, N Cape

Magisterial District Rank (maximal) Mean Min Max Range IQR
Koppies 1 1.9 1 6 5 1

Smithfield 2 7.5 2 25 23 7
Hoopstad 3 11.1 1 30 29 8
Vredefort 4 7.3 1 29 28 5

Boshof 5 7.1 2 18 16 5
Jacobsdal 6 11.8 1 29 28 12

Viljoenskroon 7 14.0 3 35 32 10
Ficksburg 8 6.7 1 33 32 10

Trompsburg 9 20.4 5 36 31 14
Dewetsdorp 10 18.8 2 38 36 13
Marquard 11 11.7 2 33 31 9
Clocolan 12 18.3 5 33 28 12

Wesselsbron 13 13.7 2 32 30 8
Reitz 14 13.0 3 30 27 9

Senekal 15 15.6 3 31 28 10
Heilbron 16 14.4 4 34 30 9
Frankfort 17 23.9 4 35 31 11
Bothaville 18 16.3 4 36 32 15

Fouriesburg 19 13.0 1 28 27 12
Bultfontein 20 22.1 9 35 26 9
Theunissen 21 24.6 9 36 27 9
Ventersburg 22 26.5 8 43 35 11
Brandfort 23 22.1 6 37 31 12
Petrusburg 24 23.2 6 38 32 13

Vrede 25 12.9 1 35 34 9
Continued on next page. . .
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Table 20 (continued from previous page)
Magisterial District Rank (maximal) Mean Min Max Range IQR

Excelsior 26 28.8 8 42 34 10
Harrismith 27 28.7 8 40 32 11
Philippolis 28 28.1 12 40 28 12
Wepener 29 28.2 10 41 31 9

Fauresmith 30 23.8 5 44 39 16
Lindley 31 27.1 13 42 29 9
Zastron 32 27.7 6 43 37 14

Witsieshoek 33 18.3 1 38 37 21
Winburg 34 35.2 19 44 25 9

Jagersfontein 35 31.0 12 46 34 13
Ladybrand 36 35.2 13 43 30 8
Edenburg 37 36.6 19 46 27 6
Rouxville 38 27.7 7 40 33 17

Reddersburg 39 38.9 27 48 21 8
Bethlehem 40 40.5 26 46 20 6

Koffiefontein 41 41.6 20 48 28 5
Parys 42 40.8 33 48 15 6

Botshabelo 43 43.2 29 50 21 6
Thaba ’Nchu 44 36.3 6 48 42 8
Hennenman 45 45.2 40 49 9 3
Kroonstad 46 46.6 36 49 13 3

Odendaalsrus 47 45.0 38 48 10 4
Bethulie 48 43.7 39 50 11 4
Virginia 49 49.7 46 52 6 2
Welkom 50 50.6 48 52 4 1

Sasolburg 51 49.5 46 52 6 1
Bloemfontein 52 51.8 50 52 2 0

Table 20: Within-Province Rankings Over 50 Random Specifica-
tions, Free State

Magisterial District Rank (maximal) Mean Min Max Range IQR
Weenen 1 1.5 1 5 4 1
Ngotshe 2 2.1 1 11 10 0

Underberg 3 3.4 1 6 5 1
Utrecht 4 5.5 2 14 12 4

Paulpietersburg 5 9.5 2 30 28 10
Kranskop 6 8.2 1 25 24 6

Mount Currie 7 7.1 2 16 14 3
New Hanover 8 9.2 4 21 17 3

Msinga 9 8.7 2 18 16 3
Polela 10 16.6 8 31 23 9

Mthonjaneni 11 15.7 6 25 19 8
Ixopo 12 10.3 4 22 18 4
Alfred 13 14.6 7 28 21 8

Nkandla 14 14.8 6 38 32 6
Continued on next page. . .
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Table 21 (continued from previous page)
Magisterial District Rank (maximal) Mean Min Max Range IQR

Mooi river 15 14.7 3 35 32 9
Umvoti 16 13.1 7 27 20 3

Richmond 17 13.9 4 32 28 10
Babanango 18 17.4 8 25 17 5

Umzinto 19 18.9 11 29 18 6
Lower Tugela 20 20.5 12 34 22 10

Simdlangentsha 21 23.2 8 35 27 5
Nongoma 22 23.6 11 33 22 8
Vryheid 23 22.4 13 35 22 9
Nqutu 24 23.5 15 34 19 6

Mhlabathini 25 25.4 11 38 27 8
Mapumulo 26 25.2 10 34 24 7
Bergville 27 30.2 17 41 24 7
Estcourt 28 32.7 18 42 24 5
Ubombo 29 24.4 11 37 26 10
Eshowe 30 31.8 23 39 16 4

Kliprivier 31 27.5 18 37 19 8
Impendle 32 30.3 16 41 25 8
Dundee 33 31.6 24 39 15 8

Dannhauser 34 34.9 19 46 27 5
Hlabisa 35 30.7 20 42 22 8

Ndwedwe 36 37.4 27 45 18 4
Ingwavuma 37 30.1 12 41 29 8
Umbumbulu 38 38.6 27 46 19 5

Port Shepstone 39 39.9 33 46 13 6
Inanda 40 41.6 34 48 14 4

Mtunzini 41 40.9 35 47 12 4
Glencoe 42 39.1 30 48 18 6

Lions River 43 41.9 27 48 21 5
Lower Umfolozi 44 44.2 38 48 10 4

Newcastle 45 44.9 36 49 13 4
Umlazi 46 45.9 36 49 13 3

Camperdown 47 42.1 28 48 20 5
Pietermaritzburg 48 46.6 42 50 8 3

Pinetown 49 48.6 46 49 3 1
Durban 50 50.6 50 51 1 1

Chatswoth 51 50.3 49 51 2 1
Table 21: Within-Province Rankings Over 50 Random Specifica-
tions, KwaZulu-Natal

Magisterial District Rank (maximal) Mean Min Max Range IQR
Bronkhorstspruit 1 1.0 1 1 0 0

Nigel 2 4.2 2 7 5 2
Cullinan 3 3.1 2 7 5 2

Oberholzer 4 5.0 2 15 13 3
Continued on next page. . .
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Table 22 (continued from previous page)
Magisterial District Rank (maximal) Mean Min Max Range IQR

Westonaria 5 7.0 3 16 13 3
Heidelberg 6 4.2 2 15 13 2

Vanderbijlpark 7 10.2 5 16 11 5
Randfontein 8 6.7 4 11 7 1
Vereeniging 9 10.4 5 15 10 4

Brakpan 10 10.4 4 17 13 3
Benoni 11 10.5 4 15 11 4

Randburg 12 13.5 8 18 10 3
Soshanguve 13 9.7 4 18 14 4

Alberton 14 14.0 6 18 12 3
Kempton Park 15 13.6 8 19 11 3
Krugersdorp 16 13.7 9 17 8 3

Boksburg 17 18.2 16 22 6 2
Springs 18 20.0 13 22 9 2

Wonderboom 19 17.7 13 21 8 2
Roodepoort 20 19.4 16 22 6 1

Johannesburg 21 21.7 18 24 6 1
Soweto 22 19.9 7 24 17 5

Germiston 23 22.2 18 24 6 1
Pretoria 24 23.8 22 24 2 0

Table 22: Within-Province Rankings Over 50 Random Specifica-
tions, Gauteng

Magisterial District Rank (maximal) Mean Min Max Range IQR
Carolina 1 1.3 1 6 5 0

Eerstehoek 2 3.0 1 7 6 1
Bethal 3 3.4 1 7 6 2

Waterval Boven 4 4.0 1 7 6 0
Amersfoort 5 6.6 1 17 16 4

Ermelo 6 7.0 3 19 16 2
Balfour 7 11.8 7 20 13 5
Belfast 8 9.3 2 20 18 6

Standerton 9 9.9 5 19 14 5
Nkomazi 10 11.9 3 27 24 9
Moretele 11 14.9 6 25 19 8
Volksrust 12 12.6 7 20 13 3

Wakkerstroom 13 12.8 5 19 14 6
Lydenburg 14 11.8 2 20 18 5
Piet Retief 15 10.5 4 20 16 5

Pelgrimsrust 16 14.6 6 22 16 7
Nsikazi 17 17.9 11 26 15 4

Groblersdal 18 18.2 10 24 14 6
Barberton 19 14.6 7 22 15 7
Witbank 20 21.5 16 27 11 3

Middelburg 21 23.7 19 28 9 4
Continued on next page. . .
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Table 23 (continued from previous page)
Magisterial District Rank (maximal) Mean Min Max Range IQR

Hoäveldrif 22 20.3 11 25 14 4
Witrivier 23 23.4 16 29 13 4

Kwamhlanga 24 22.9 10 29 19 10
Delmas 25 21.8 14 29 15 3

Nelspruit 26 24.8 20 29 9 2
Kriel 27 28.1 19 31 12 5

Mbibana 28 27.7 18 31 13 3
Mdutjana 29 27.3 22 30 8 3
Mkobola 30 29.9 28 31 3 0
Moutse 31 28.8 18 31 13 3

Table 23: Within-Province Rankings Over 50 Random Specifica-
tions, Mpumalanga

Magisterial District Rank (maximal) Mean Min Max Range IQR
Letaba 1 1.2 1 6 5 0
Messina 2 4.0 2 9 7 3
Mhala 3 3.8 1 13 12 2

Bolobedu 4 8.9 2 19 17 9
Sekhukhuneland 5 7.5 2 16 14 4

Mapulaneng 6 6.6 2 17 15 4
Bochum 7 9.9 2 22 20 8

Mokerong 8 9.2 4 20 16 4
Seshego 9 12.8 7 24 17 6

Thabamoopo 10 16.5 6 30 24 8
Nebo 11 12.2 2 24 22 4

Sekgosese 12 11.8 1 26 25 8
Soutpansberg 13 14.1 5 26 21 6

Mutali 14 12.1 2 25 23 11
Dzanani 15 15.4 3 31 28 11

Phalaborwa 16 20.4 12 31 19 7
Warmbad 17 14.0 2 26 24 9

Ritavi 18 20.0 14 31 17 7
Thabazimbi 19 13.1 2 22 20 8

Vuwani 20 21.1 10 29 19 4
Malamulela 21 19.7 3 28 25 6
Hlanganani 22 22.8 9 31 22 7

Potgietersrus 23 15.2 2 25 23 10
Namakgale 24 24.3 10 30 20 6
Waterberg 25 20.4 2 30 28 11
Lulekani 26 22.8 11 30 19 7

Thohoyandou 27 26.3 19 31 12 5
Naphuno 28 25.2 15 31 16 6

Pietersburg 29 28.1 25 31 6 2
Giyani 30 27.6 9 31 22 5

Continued on next page. . .
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Table 24 (continued from previous page)
Magisterial District Rank (maximal) Mean Min Max Range IQR

Ellisras 31 28.9 12 31 19 2
Table 24: Within-Province Rankings Over 50 Random Specifica-
tions, Limpopo
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C Data Construction

The same datasets that I use in this paper were used in previous poverty mapping studies
of South Africa - see (ABD+02; ABL+00) - and I tried to construct the variables in the
same way as did those studies. Of course, I may not have succeeded entirely in recreating
the datasets they used, but the first-stage regression results I obtain when I use the same
specifications as them (not displayed; available on request) are practically identical, so I
am confident that differences in data cleaning and construction are not responsible for the
divergence in small-area estimates documented above.

C.1 Household-level Covariates

Variable Definition or Comments
logHHsize log(number of members of household).

aHH Dummy: all household members African
wHH Dummy: all household members white
fDw Dummy: dwelling is house, apartment, retire-

ment village; includes rooms in shared prop-
erty (e.g. hostels)

rpP total number of rooms/household size
sFac Dummy: flush or chemical toilet, or pit latrine

with ventilation (excludes non-ventilated pit
latrines) on the same site as dwelling

elecL Dummy: dwelling has electric lighting
rCol Dummy: local authority removes refuse
hTel Dummy: dwelling has fixed-line telephone in

working order
nPrEd Number of household members with complete

primary education
nProf Number of household members employed as

professionals (ISCO 1-digit codes 2-3)
nSk Number of household members employed as

skilled workers (ISCO 1-digit codes 6-8)
fhHH Dummy: household head is female
farm Dummy: enumeration area is classified as

“farm”
urban Dummy: enumeration area is classified as “ur-

ban”
tribal Dummy: enumeration area is classified as

“tribal” (indicates former tribal authority)

Statistics South Africa defines a person to be a household member if she sleeps in the dwelling
for four or more days per week and regularly shares meals with the other members.

C.2 District-level Covariates

Other than the census means for all of the household-level covariates described above, I
computed the mean (over each magisterial district) of the following variables:
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Variable Definition or Comments
waterServices Dummy: household has piped water inside

dwelling or on site
propertyOwnedByHH Dummy: household owns dwelling

D Descriptive Statistics

Below, I report some basic descriptive statistics for each of the nine provinces, broken down
by the data source (IES/OHS or Census Data). Descriptive statistics by province for the
dependent variable, the logarithm of total monthly household consumption, appear in section
D.1. Next, I report the statistics for the household-level controls in section D.2, while the
descriptive statistics for the area-level controls are tabulated in section D.3. All statistics are
individual-level estimates, i.e. having been weighted by household size and sampling weights
(in the case of the IES) or post-stratification weights (in the case of the census).

D.1 Consumption Data

Province Mean (Std. Dev.) Min. Max. N
W Cape 7.7952 (0.9362) 4.3737 11.9343 3 860 967
E Cape 6.9501 (0.9846) 3.8833 12.0237 6 059 647
N Cape 7.1605 (1.0041) 4.0999 11.1425 811 126

Free State 6.9565 (1.0359) 3.8677 11.1075 2 448 094
KwaZulu-Natal 7.5049 (0.9295) 4.6883 12.6373 7 786 987

North West 7.1572 (1.0335) 4.6883 12.932 2 014 530
Gauteng 8.1135 (0.9600) 4.8122 12.0034 6 562 701

Mpumalanga 7.3076 (0.9082) 4.7362 11.0076 2 645 663
Limpopo 7.1985 (1.0646) 4.2195 11.9525 4 773 999

Table 25: Summary Statistics - Log Monthly Total Expenditure, by Province (IES Data)

D.2 Household-Level Covariates

Table 26: Summary Statistics - HH Controls, W Cape (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.499 (0.549) 0 3.434
africanHH 0.2074 (0.4054) 0 1
whiteHH 0.1924 (0.3942) 0 1
formalDwelling 0.8024 (0.3982) 0 1
roomsPerPerson 1.0842 (0.8985) 0 65
sanitationFacilities 0.8689 (0.3375) 0 1
electricLighting 0.8711 (0.3351) 0 1
refuseCollection 0.8579 (0.3491) 0 1
hasTelephone 0.5318 (0.499) 0 1

Continued on next page...
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... table 26 continued
Variable Mean (Std. Dev.) Min. Max.

numPrimaryEd 3.5084 (2.021) 0 24
numProfessional 0.2258 (0.5219) 0 5
numSkilled 0.3917 (0.6726) 0 14
femaleHeadedHH 0.2562 (0.4365) 0 1
(mean) farm 0.1015 (0.302) 0 1
(mean) urban 0.8912 (0.3114) 0 1

N 3803234

Table 27: Summary Statistics - HH Controls, W Cape (IES Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.5108 (0.5273) 0 3.2958
africanHH 0.1918 (0.3937) 0 1
whiteHH 0.2123 (0.4089) 0 1
formalDwelling 0.8656 (0.3411) 0 1
roomsPerPerson 1.1112 (0.9380) 0.1111 11
sanitationFacilities 0.1716 (0.377) 0 1
electricLighting 0.8921 (0.3103) 0 1
refuseCollection 0.8485 (0.3586) 0 1
hasTelephone 0.4719 (0.4992) 0 1
numPrimaryEd 2.6687 (1.7495) 0 11
numProfessional 0.1487 (0.4172) 0 3
numSkilled 0.4256 (0.7196) 0 5
femaleHeadedHH 0.2263 (0.4184) 0 1
(mean) farm 0.1431 (0.3501) 0 1
(mean) urban 0.8390 (0.3675) 0 1

N 3860967

Table 28: Summary Statistics: HH Controls, E Cape (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.6758 (0.5634) 0 3.3673
africanHH 0.8673 (0.3393) 0 1
whiteHH 0.0486 (0.2149) 0 1
formalDwelling 0.4184 (0.4933) 0 1
roomsPerPerson 0.7678 (0.7314) 0 23
sanitationFacilities 0.2692 (0.4435) 0 1
electricLighting 0.2919 (0.4547) 0 1
refuseCollection 0.3195 (0.4663) 0 1
hasTelephone 0.1363 (0.3431) 0 1

Continued on next page...
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... table 28 continued
Variable Mean (Std. Dev.) Min. Max.

numPrimaryEd 3.2585 (2.2136) 0 24
numProfessional 0.1068 (0.3792) 0 8
numSkilled 0.1436 (0.4337) 0 7
femaleHeadedHH 0.5027 (0.5) 0 1
(mean) farm 0.0351 (0.1841) 0 1
(mean) urban 0.3593 (0.4798) 0 1
(mean) tribal 0.5892 (0.4920) 0 1

N 6167770

Table 29: Summary Statistics: HH Controls, E Cape (IES Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.7037 (0.5049) 0 3.0445
africanHH 0.8649 (0.3418) 0 1
whiteHH 0.0485 (0.2148) 0 1
formalDwelling 0.5259 (0.4993) 0 1
roomsPerPerson 0.8581 (0.7869) 0.0833 13
sanitationFacilities 0.1748 (0.3798) 0 1
electricLighting 0.3184 (0.4658) 0 1
refuseCollection 0.3374 (0.4728) 0 1
hasTelephone 0.127 (0.3329) 0 1
numPrimaryEd 2.523 (1.8507) 0 10
numProfessional 0.1218 (0.391) 0 4
numSkilled 0.1293 (0.3762) 0 4
femaleHeadedHH 0.4487 (0.4974) 0 1
(mean) farm 0.0882 (0.2836) 0 1
(mean) urban 0.353 (0.4779) 0 1
(mean) tribal 0.4616 (0.4985) 0 1

N 6059647

Table 30: Summary Statistics - HH Controls, N Cape 1

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.5935 (0.5698) 0 3.7377
africanHH 0.3142 (0.4642) 0 1
whiteHH 0.1202 (0.3252) 0 1
formalDwelling 0.7823 (0.4127) 0 1
roomsPerPerson 0.9054 (0.8580) 0 14
sanitationFacilities 0.5890 (0.4920) 0 1
electricLighting 0.7297 (0.4441) 0 1
refuseCollection 0.7315 (0.4432) 0 1

Continued on next page...
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... table 30 continued
Variable Mean (Std. Dev.) Min. Max.

hasTelephone 0.2833 (0.4506) 0 1
numPrimaryEd 3.162 (2.1628) 0 13
numProfessional 0.1239 (0.3881) 0 4
numSkilled 0.3087 (0.6457) 0 10
femaleHeadedHH 0.2978 (0.4573) 0 1
(mean) farm 0.2389 (0.4264) 0 1
(mean) urban 0.7049 (0.4561) 0 1

N 802263

Table 31: Summary Statistics - HH Controls, N Cape (IES Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.5028 (0.5666) 0 2.6391
africanHH 0.3094 (0.4622) 0 1
whiteHH 0.1344 (0.3411) 0 1
formalDwelling 0.8426 (0.3642) 0 1
roomsPerPerson 0.9641 (0.8947) 0.1429 11
sanitationFacilities 0.2344 (0.4236) 0 1
electricLighting 0.7688 (0.4216) 0 1
refuseCollection 0.7361 (0.4407) 0 1
hasTelephone 0.2544 (0.4355) 0 1
numPrimaryEd 1.9612 (1.6547) 0 9
numProfessional 0.0718 (0.2877) 0 2
numSkilled 0.2364 (0.531) 0 4
femaleHeadedHH 0.2572 (0.4371) 0 1
(mean) farm 0.2551 (0.4359) 0 1
(mean) urban 0.7000 (0.4583) 0 1

N 811126

Table 32: Summary Statistics - HH Controls, Free State (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.5224 (0.5524) 0 3.1355
africanHH 0.8410 (0.3656) 0 1
whiteHH 0.1129 (0.3164) 0 1
formalDwelling 0.5826 (0.4931) 0 1
roomsPerPerson 0.9340 (0.8438) 0 20.75
sanitationFacilities 0.4087 (0.4916) 0 1
electricLighting 0.5671 (0.4955) 0 1
refuseCollection 0.6341 (0.4817) 0 1

Continued on next page...
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... table 32 continued
Variable Mean (Std. Dev.) Min. Max.

hasTelephone 0.2057 (0.4042) 0 1
numPrimaryEd 3.0211 (1.8649) 0 15
numProfessional 0.1153 (0.3781) 0 7
numSkilled 0.3028 (0.5476) 0 10
femaleHeadedHH 0.3364 (0.4725) 0 1
(mean) farm 0.166 (0.3721) 0 1
(mean) urban 0.7094 (0.4541) 0 1

N 2473262

Table 33: Summary Statistics - HH Controls, Free State (IES Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.4835 (0.5276) 0 2.7081
africanHH 0.8480 (0.359) 0 1
whiteHH 0.1127 (0.3162) 0 1
formalDwelling 0.727 (0.4455) 0 1
roomsPerPerson 1.0643 (0.904) 0.1111 11
sanitationFacilities 0.2027 (0.402) 0 1
electricLighting 0.6830 (0.4653) 0 1
refuseCollection 0.6088 (0.488) 0 1
hasTelephone 0.2075 (0.4055) 0 1
numPrimaryEd 2.1238 (1.7011) 0 10
numProfessional 0.1244 (0.4067) 0 3
numSkilled 0.2042 (0.4486) 0 3
femaleHeadedHH 0.2627 (0.4401) 0 1
(mean) farm 0.331 (0.4706) 0 1
(mean) urban 0.6245 (0.4843) 0 1

N 2448094

Table 34: Summary Statistics - HH Controls, KZN (Census Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.7444 (0.5995) 0 3.912
africanHH 0.8147 (0.3885) 0 1
whiteHH 0.061 (0.2393) 0 1
formalDwelling 0.4647 (0.4988) 0 1
roomsPerPerson 0.8505 (0.7242) 0 43
sanitationFacilities 0.3374 (0.4728) 0 1
electricLighting 0.4852 (0.4998) 0 1
refuseCollection 0.3538 (0.4782) 0 1
hasTelephone 0.2218 (0.4155) 0 1

Continued on next page...
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... table 34 continued
Variable Mean (Std. Dev.) Min. Max.

numPrimaryEd 3.6594 (2.5185) 0 28
numProfessional 0.1371 (0.4292) 0 15
numSkilled 0.2383 (0.603) 0 32
femaleHeadedHH 0.4065 (0.4912) 0 1
(mean) farm 0.0544 (0.2268) 0 1
(mean) urban 0.4266 (0.4946) 0 1
(mean) tribal 0.4832 (0.4997) 0 1

N 8097994

Table 35: Summary Statistics - HH Controls, KZN (IES Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.7758 (0.5128) 0 3.434
africanHH 0.8196 (0.3845) 0 1
whiteHH 0.0606 (0.2386) 0 1
formalDwelling 0.5396 (0.4984) 0 1
roomsPerPerson 0.9253 (0.7196) 0.0769 14
sanitationFacilities 0.1766 (0.3813) 0 1
electricLighting 0.5185 (0.4997) 0 1
refuseCollection 0.3996 (0.4898) 0 1
hasTelephone 0.2201 (0.4143) 0 1
numPrimaryEd 2.9497 (2.0222) 0 12
numProfessional 0.1609 (0.4638) 0 4
numSkilled 0.3138 (0.5648) 0 4
femaleHeadedHH 0.3444 (0.4752) 0 1
(mean) farm 0.1076 (0.3099) 0 1
(mean) urban 0.4184 (0.4933) 0 1
(mean) tribal 0.4384 (0.4962) 0 1

N 7786987

Table 36: Summary Statistics - HH Controls, North West (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.6526 (0.5883) 0 3.5264
africanHH 0.9128 (0.2821) 0 1
whiteHH 0.0616 (0.2405) 0 1
formalDwelling 0.6769 (0.4677) 0 1
roomsPerPerson 0.8963 (0.7695) 0 28
sanitationFacilities 0.2733 (0.4456) 0 1
electricLighting 0.4237 (0.4941) 0 1

Continued on next page...

60



... table 36 continued
Variable Mean (Std. Dev.) Min. Max.

refuseCollection 0.3252 (0.4684) 0 1
hasTelephone 0.1464 (0.3535) 0 1
numPrimaryEd 3.3128 (2.1729) 0 15
numProfessional 0.1124 (0.3682) 0 5
numSkilled 0.3031 (0.5689) 0 8
femaleHeadedHH 0.3962 (0.4891) 0 1
(mean) farm 0.0913 (0.2881) 0 1
(mean) urban 0.3514 (0.4774) 0 1
(mean) tribal 0.4639 (0.4987) 0 1

N 3216039

Table 37: Summary Statistics - HH Controls, North West (IES
Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.5784 (0.5848) 0 3.1355
africanHH 0.8554 (0.3517) 0 1
whiteHH 0.1058 (0.3075) 0 1
formalDwelling 0.7972 (0.4021) 0 1
roomsPerPerson 0.9756 (0.7848) 0.125 12
sanitationFacilities 0.1753 (0.3802) 0 1
electricLighting 0.5349 (0.4988) 0 1
refuseCollection 0.4276 (0.4947) 0 1
hasTelephone 0.1663 (0.3723) 0 1
numPrimaryEd 2.3662 (1.777) 0 9
numProfessional 0.1055 (0.3615) 0 3
numSkilled 0.2805 (0.503) 0 3
femaleHeadedHH 0.2462 (0.4308) 0 1
(mean) farm 0.2453 (0.4303) 0 1
(mean) urban 0.4196 (0.4935) 0 1
(mean) tribal 0.1632 (0.3695) 0 1

N 2014530

Table 38: Summary Statistics - HH Controls, Gauteng (Census)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.4239 (0.5929) 0 3.912
africanHH 0.6858 (0.4642) 0 1
whiteHH 0.2133 (0.4096) 0 1
formalDwelling 0.6951 (0.4603) 0 1
roomsPerPerson 1.0976 (0.9295) 0 30

Continued on next page...
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... table 38 continued
Variable Mean (Std. Dev.) Min. Max.

sanitationFacilities 0.8360 (0.3703) 0 1
electricLighting 0.8191 (0.3849) 0 1
refuseCollection 0.8577 (0.3494) 0 1
hasTelephone 0.4637 (0.4987) 0 1
numPrimaryEd 3.3858 (2.1076) 0 29
numProfessional 0.2495 (0.5508) 0 9
numSkilled 0.354 (0.6017) 0 9
femaleHeadedHH 0.2811 (0.4495) 0 1
(mean) farm 0.0258 (0.1584) 0 1
(mean) urban 0.9713 (0.167) 0 1

N 6890762

Table 39: Summary Statistics - HH Controls, Gauteng (IES Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.4621 (0.5475) 0 3.091
africanHH 0.6854 (0.4644) 0 1
whiteHH 0.2349 (0.424) 0 1
formalDwelling 0.8343 (0.3718) 0 1
roomsPerPerson 1.2618 (0.9467) 0.1111 11
sanitationFacilities 0.3191 (0.4661) 0 1
electricLighting 0.9241 (0.2649) 0 1
refuseCollection 0.8808 (0.3241) 0 1
hasTelephone 0.4425 (0.4967) 0 1
numPrimaryEd 3.0178 (1.7779) 0 13
numProfessional 0.2172 (0.4993) 0 4
numSkilled 0.388 (0.6184) 0 5
femaleHeadedHH 0.1969 (0.3976) 0 1
(mean) farm 0.0448 (0.2069) 0 1
(mean) urban 0.9272 (0.2598) 0 1

N 6562701

Table 40: Summary Statistics - HH Controls, Mpumalanga (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.6604 (0.5730) 0 3.4657
africanHH 0.8938 (0.3081) 0 1
whiteHH 0.0812 (0.2732) 0 1
formalDwelling 0.6202 (0.4853) 0 1
roomsPerPerson 0.9447 (0.7644) 0 28

Continued on next page...
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... table 40 continued
Variable Mean (Std. Dev.) Min. Max.

sanitationFacilities 0.3274 (0.4693) 0 1
electricLighting 0.5712 (0.4949) 0 1
refuseCollection 0.3533 (0.478) 0 1
hasTelephone 0.1568 (0.3636) 0 1
numPrimaryEd 3.2396 (2.118) 0 18
numProfessional 0.1108 (0.3744) 0 5
numSkilled 0.3463 (0.6113) 0 10
femaleHeadedHH 0.3787 (0.4851) 0 1
(mean) farm 0.1218 (0.3271) 0 1
(mean) urban 0.3875 (0.4872) 0 1
(mean) tribal 0.4683 (0.499) 0 1

N 2775474

Table 41: Summary Statistics - HH Controls, Mpumalanga (IES
Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.7633 (0.4621) 0 2.9957
africanHH 0.9052 (0.2929) 0 1
whiteHH 0.0777 (0.2677) 0 1
formalDwelling 0.5962 (0.4906) 0 1
roomsPerPerson 0.9917 (0.7212) 0.125 11
sanitationFacilities 0.3572 (0.4792) 0 1
electricLighting 0.5574 (0.4967) 0 1
refuseCollection 0.3393 (0.4735) 0 1
hasTelephone 0.1401 (0.3471) 0 1
numPrimaryEd 2.5433 (1.7665) 0 12
numProfessional 0.0827 (0.3127) 0 2
numSkilled 0.398 (0.5640) 0 4
femaleHeadedHH 0.2326 (0.4225) 0 1
(mean) farm 0.1885 (0.3911) 0 1
(mean) urban 0.2613 (0.4394) 0 1
(mean) tribal 0.3343 (0.4718) 0 1

N 2645663

Table 42: Summary Statistics - HH Controls, Limpopo (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.7065 (0.5141) 0 3.5835
africanHH 0.9701 (0.1703) 0 1

Continued on next page...
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... table 42 continued
Variable Mean (Std. Dev.) Min. Max.

whiteHH 0.0226 (0.1485) 0 1
formalDwelling 0.6027 (0.4893) 0 1
roomsPerPerson 0.8420 (0.7029) 0 24
sanitationFacilities 0.1019 (0.3025) 0 1
electricLighting 0.3577 (0.4793) 0 1
refuseCollection 0.0975 (0.2966) 0 1
hasTelephone 0.0614 (0.2401) 0 1
numPrimaryEd 3.2415 (1.9918) 0 20
numProfessional 0.0972 (0.3601) 0 9
numSkilled 0.1561 (0.4432) 0 10
femaleHeadedHH 0.5274 (0.4992) 0 1
(mean) farm 0.043 (0.2029) 0 1
(mean) urban 0.1047 (0.3062) 0 1
(mean) tribal 0.8470 (0.36) 0 1

N 4738988

Table 43: Summary Statistics - HH Controls, Limpopo (IES Data)

Variable Mean (Std. Dev.) Min. Max.
(mean) logHHsize 1.749 (0.4793) 0 2.9444
africanHH 0.9687 (0.1741) 0 1
whiteHH 0.0239 (0.1529) 0 1
formalDwelling 0.5999 (0.4899) 0 1
roomsPerPerson 0.9266 (0.6494) 0.1111 13
sanitationFacilities 0.2391 (0.4265) 0 1
electricLighting 0.3381 (0.4731) 0 1
refuseCollection 0.1365 (0.3434) 0 1
hasTelephone 0.0911 (0.2878) 0 1
numPrimaryEd 2.6196 (1.7836) 0 9
numProfessional 0.1696 (0.4645) 0 4
numSkilled 0.1367 (0.396) 0 4
femaleHeadedHH 0.4374 (0.4961) 0 1
(mean) farm 0.0165 (0.1272) 0 1
(mean) urban 0.1096 (0.3123) 0 1
(mean) tribal 0.7686 (0.4217) 0 1

N 4773999

D.3 Area-Level Controls (Census Covariates)
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Table 44: Summary Statistics - Area Controls, W Cape (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.1543 (0.1018) 0.8254 1.3458
africanHH 0.2256 (0.2377) 0 0.6971
whiteHH 0.2652 (0.1692) 0.0002 0.5972
formalDwelling 0.7738 (0.1622) 0.4632 0.9615
roomsPerPerson 1.4784 (0.3072) 1.0294 2.1681
sanitationFacilities 0.8516 (0.1127) 0.232 0.9795
electricLighting 0.8473 (0.1) 0.665 0.9773
refuseCollection 0.8416 (0.1335) 0.3 0.9753
hasTelephone 0.5366 (0.185) 0.2525 0.8184
numPrimaryEd 2.692 (0.2331) 1.9412 2.9899
numProfessional 0.2193 (0.1045) 0.0368 0.3865
numSkilled 0.3057 (0.0496) 0.1714 0.4930
femaleHeadedHH 0.2743 (0.0511) 0.1429 0.3382
tribal 0.0002 (0.0014) 0 0.0127
urban 0.8846 (0.1645) 0.3268 1
farm 0.1085 (0.1564) 0 0.5631
waterServices 0.8913 (0.0855) 0.6634 0.9833
propertyOwnedByHH 0.6870 (0.1501) 0.2313 0.9106

N 3803234

Table 45: Summary Statistics - Area Controls, W Cape (IES Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.1535 (0.1019) 0.8254 1.3458
africanHH 0.1627 (0.1678) 0 0.6971
whiteHH 0.2858 (0.1387) 0.0002 0.5972
formalDwelling 0.8087 (0.1182) 0.4632 0.9615
roomsPerPerson 1.5021 (0.2548) 1.0294 2.1681
sanitationFacilities 0.8157 (0.1343) 0.232 0.9795
electricLighting 0.8357 (0.0858) 0.665 0.9773
refuseCollection 0.7812 (0.1535) 0.3 0.9753
hasTelephone 0.4971 (0.1588) 0.2525 0.8184
numPrimaryEd 2.5847 (0.2631) 1.9412 2.9899
numProfessional 0.1901 (0.0936) 0.0368 0.3865
numSkilled 0.3 (0.0572) 0.1714 0.4930
femaleHeadedHH 0.2539 (0.0481) 0.1429 0.3382
tribal 0.0003 (0.0019) 0 0.0127
urban 0.7967 (0.187) 0.3268 1
farm 0.1929 (0.1773) 0 0.5631
waterServices 0.896 (0.0695) 0.6634 0.9833
propertyOwnedByHH 0.6306 (0.1437) 0.2313 0.9106

N 3860967
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Table 46: Summary Statistics - Area Controls, E Cape (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.2796 (0.1144) 1.0634 1.4955
africanHH 0.8597 (0.2117) 0.0446 0.9981
whiteHH 0.0694 (0.1056) 0 0.3178
formalDwelling 0.4172 (0.2344) 0.0731 0.9582
roomsPerPerson 1.1074 (0.2241) 0.7807 1.7982
sanitationFacilities 0.2798 (0.3247) 0.0019 0.8423
electricLighting 0.2935 (0.2721) 0.0108 0.864
refuseCollection 0.3254 (0.3581) 0.0005 0.9289
hasTelephone 0.141 (0.1735) 0.001 0.5183
numPrimaryEd 2.3946 (0.3059) 1.4545 2.9073
numProfessional 0.1023 (0.0607) 0.0266 0.2922
numSkilled 0.1218 (0.0917) 0.0219 0.4232
femaleHeadedHH 0.4976 (0.1596) 0.1369 0.6934
tribal 0.5711 (0.4256) 0 1
urban 0.3723 (0.3827) 0 0.9730
farm 0.0398 (0.0899) 0 0.6082
waterServices 0.3248 (0.3268) 0.0073 0.9036
propertyOwnedByHH 0.8609 (0.0951) 0.3185 0.9595

N 6167770

Table 47: Summary Statistics - Area Controls, E Cape (IES Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.2803 (0.1048) 1.0634 1.4955
africanHH 0.8619 (0.2145) 0.0446 0.9981
whiteHH 0.0586 (0.0884) 0 0.3178
formalDwelling 0.4513 (0.2525) 0.0731 0.9582
roomsPerPerson 1.1105 (0.2183) 0.7807 1.7982
sanitationFacilities 0.2288 (0.2719) 0.0019 0.8423
electricLighting 0.2982 (0.2682) 0.0108 0.864
refuseCollection 0.3091 (0.3247) 0.0005 0.9289
hasTelephone 0.1248 (0.1499) 0.001 0.5183
numPrimaryEd 2.3217 (0.3058) 1.4545 2.9073
numProfessional 0.0919 (0.0531) 0.0266 0.2922
numSkilled 0.1237 (0.0929) 0.0219 0.4232
femaleHeadedHH 0.4776 (0.1721) 0.1369 0.6934
tribal 0.5398 (0.4337) 0 1
urban 0.3585 (0.3506) 0 0.9730
farm 0.0762 (0.1271) 0 0.6082
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... table 47 continued
Variable Mean (Std. Dev.) Min. Max.

waterServices 0.3178 (0.3104) 0.0073 0.9036
propertyOwnedByHH 0.8355 (0.1218) 0.3185 0.9595

N 6059647

Table 48: Summary Statistics - Area Controls, N Cape (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.204 (0.0771) 0.9277 1.3082
africanHH 0.3161 (0.2003) 0 0.7010
whiteHH 0.1815 (0.0439) 0.0971 0.3131
formalDwelling 0.7646 (0.0864) 0.5773 0.9907
roomsPerPerson 1.3143 (0.123) 1.0438 1.7407
sanitationFacilities 0.6063 (0.1904) 0.1702 0.8961
electricLighting 0.7183 (0.0836) 0.4947 0.8314
refuseCollection 0.7120 (0.1746) 0.3912 0.9351
hasTelephone 0.3094 (0.0743) 0.1583 0.3915
numPrimaryEd 2.3663 (0.409) 1.4255 2.8106
numProfessional 0.1267 (0.0547) 0.0319 0.2107
numSkilled 0.2658 (0.0764) 0.0909 0.7365
femaleHeadedHH 0.2947 (0.0371) 0.2039 0.3896
urban 0.6987 (0.2259) 0 0.9679
farm 0.2483 (0.2074) 0.0321 1
waterServices 0.8360 (0.0936) 0.506 0.9739
propertyOwnedByHH 0.6654 (0.1443) 0.4211 0.8461

N 802263

Table 49: Summary Statistics - Area Controls, N Cape (IES Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.1901 (0.0859) 0.9277 1.3082
africanHH 0.2924 (0.2018) 0 0.7010
whiteHH 0.1756 (0.0522) 0.0971 0.3131
formalDwelling 0.7806 (0.1031) 0.5773 0.9907
roomsPerPerson 1.3232 (0.1541) 1.0438 1.7407
sanitationFacilities 0.5177 (0.1884) 0.1702 0.8961
electricLighting 0.6969 (0.0812) 0.4947 0.8314
refuseCollection 0.6543 (0.1576) 0.3912 0.9351
hasTelephone 0.2829 (0.0722) 0.1583 0.3915
numPrimaryEd 2.1632 (0.3849) 1.4255 2.8106
numProfessional 0.102 (0.0464) 0.0319 0.2107

Continued on next page...

67



... table 49 continued
Variable Mean (Std. Dev.) Min. Max.

numSkilled 0.2624 (0.0891) 0.0909 0.7365
femaleHeadedHH 0.2931 (0.0407) 0.2039 0.3896
urban 0.6416 (0.2237) 0 0.9679
farm 0.3203 (0.2172) 0.0321 1
waterServices 0.8120 (0.1115) 0.506 0.9739
propertyOwnedByHH 0.6354 (0.1331) 0.4211 0.8461

N 811126

Table 50: Summary Statistics - Area Controls, Free State (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.169 (0.0964) 0.8955 1.3205
africanHH 0.8170 (0.1351) 0.4333 0.9952
whiteHH 0.1436 (0.1009) 0.0003 0.3073
formalDwelling 0.5794 (0.1013) 0.3578 0.9055
roomsPerPerson 1.2717 (0.1624) 0.9422 1.7691
sanitationFacilities 0.4292 (0.2674) 0.0723 0.8269
electricLighting 0.5601 (0.204) 0.1675 0.8021
refuseCollection 0.6372 (0.2304) 0.1182 0.9489
hasTelephone 0.2175 (0.1218) 0.0506 0.4252
numPrimaryEd 2.3395 (0.2052) 1.5055 2.6163
numProfessional 0.1137 (0.0537) 0.032 0.2192
numSkilled 0.2661 (0.0598) 0.0947 0.4792
femaleHeadedHH 0.3449 (0.075) 0.1395 0.498
tribal 0.1179 (0.2843) 0 0.8472
urban 0.7152 (0.2785) 0 1
farm 0.1621 (0.1874) 0 1
waterServices 0.6936 (0.2036) 0.2991 0.9349
propertyOwnedByHH 0.7564 (0.1196) 0.4659 0.9581

N 2473262

Table 51: Summary Statistics - Area Controls, Free State (IES
Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.1751 (0.0868) 0.8955 1.3205
africanHH 0.8094 (0.1226) 0.4333 0.9952
whiteHH 0.1409 (0.0775) 0.0003 0.3073
formalDwelling 0.5812 (0.121) 0.3578 0.9055
roomsPerPerson 1.2819 (0.1591) 0.9422 1.7691
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... table 51 continued
Variable Mean (Std. Dev.) Min. Max.

sanitationFacilities 0.4058 (0.2445) 0.0723 0.8269
electricLighting 0.5917 (0.1724) 0.1675 0.8021
refuseCollection 0.6419 (0.1796) 0.1182 0.9489
hasTelephone 0.2075 (0.095) 0.0506 0.4252
numPrimaryEd 2.2476 (0.2561) 1.5055 2.6163
numProfessional 0.0967 (0.046) 0.032 0.2192
numSkilled 0.2761 (0.0616) 0.0947 0.4792
femaleHeadedHH 0.327 (0.0652) 0.1395 0.498
tribal 0.0597 (0.2069) 0 0.8472
urban 0.6969 (0.2211) 0 1
farm 0.2392 (0.187) 0 1
waterServices 0.731 (0.1685) 0.2991 0.9349
propertyOwnedByHH 0.7161 (0.1149) 0.4659 0.9581

N 2448094

Table 52: Summary Statistics: Area Controls, KZN (Census Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.3546 (0.2029) 0.9524 1.7222
africanHH 0.794 (0.2207) 0.0955 0.9985
whiteHH 0.0842 (0.1062) 0 0.3836
formalDwelling 0.4705 (0.1978) 0.0383 0.7904
roomsPerPerson 1.1515 (0.2159) 0.7859 1.6816
sanitationFacilities 0.3634 (0.2669) 0.0044 0.8988
electricLighting 0.4893 (0.2701) 0.0104 0.9148
refuseCollection 0.3765 (0.2861) 0.0004 0.9064
hasTelephone 0.2293 (0.1937) 0.004 0.6708
numPrimaryEd 2.6706 (0.359) 1.6042 3.3218
numProfessional 0.1261 (0.0742) 0.0303 0.3061
numSkilled 0.2014 (0.0905) 0.0244 0.4917
femaleHeadedHH 0.4087 (0.1056) 0.2298 0.6637
tribal 0.4466 (0.3749) 0 1
urban 0.4534 (0.3668) 0 1
farm 0.0612 (0.109) 0 0.7826
waterServices 0.4276 (0.2691) 0.0127 0.9302
propertyOwnedByHH 0.8133 (0.1132) 0.3669 0.9705

N 8097994
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Table 53: Summary Statistics - Area Controls, KZN (IES Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.3919 (0.1881) 0.9524 1.7222
africanHH 0.8310 (0.1831) 0.0955 0.9985
whiteHH 0.0745 (0.0874) 0 0.3836
formalDwelling 0.4569 (0.187) 0.0383 0.7904
roomsPerPerson 1.1267 (0.1957) 0.7859 1.6816
sanitationFacilities 0.3222 (0.2397) 0.0044 0.8988
electricLighting 0.4635 (0.2554) 0.0104 0.9148
refuseCollection 0.3304 (0.2573) 0.0004 0.9064
hasTelephone 0.1944 (0.1646) 0.004 0.6708
numPrimaryEd 2.6932 (0.3603) 1.6042 3.3218
numProfessional 0.1136 (0.0625) 0.0303 0.3061
numSkilled 0.2014 (0.0904) 0.0244 0.4917
femaleHeadedHH 0.4152 (0.0977) 0.2298 0.6637
tribal 0.4945 (0.3563) 0 1
urban 0.3898 (0.3313) 0 1
farm 0.0776 (0.1327) 0 0.7826
waterServices 0.3947 (0.2462) 0.0127 0.9302
propertyOwnedByHH 0.8238 (0.1085) 0.3669 0.9705

N 7786987

Table 54: Summary Statistics - Area Controls, North West (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.2439 (0.1343) 0.9847 1.4504
africanHH 0.8947 (0.1105) 0.638 0.9954
whiteHH 0.0815 (0.0922) 0 0.298
formalDwelling 0.6564 (0.0963) 0.5092 0.8036
roomsPerPerson 1.2528 (0.1171) 0.9199 1.5269
sanitationFacilities 0.2966 (0.1981) 0.0367 0.7219
electricLighting 0.4285 (0.1759) 0.1409 0.7129
refuseCollection 0.3353 (0.2473) 0.0327 0.8632
hasTelephone 0.1566 (0.0993) 0.0219 0.38
numPrimaryEd 2.4456 (0.2956) 1.8208 2.9428
numProfessional 0.1118 (0.029) 0.0657 0.1726
numSkilled 0.2657 (0.0875) 0.1258 0.3797
femaleHeadedHH 0.382 (0.0899) 0.2433 0.5469
tribal 0.443 (0.3202) 0 0.9582
urban 0.3609 (0.2711) 0 0.8954
farm 0.1038 (0.1171) 0 0.482
waterServices 0.475 (0.2339) 0.1015 0.8688
propertyOwnedByHH 0.8098 (0.1196) 0.4467 0.9580

N 3216039
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Table 55: Summary Statistics - Area Controls, North West (IES
Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.2399 (0.1442) 0.9847 1.4504
africanHH 0.8946 (0.1005) 0.638 0.9954
whiteHH 0.0801 (0.0785) 0 0.298
formalDwelling 0.6541 (0.0912) 0.5092 0.8036
roomsPerPerson 1.2438 (0.0953) 0.9199 1.5269
sanitationFacilities 0.2624 (0.1652) 0.0367 0.7219
electricLighting 0.4101 (0.1672) 0.1409 0.7129
refuseCollection 0.3042 (0.2116) 0.0327 0.8632
hasTelephone 0.1444 (0.0816) 0.0219 0.38
numPrimaryEd 2.389 (0.3263) 1.8208 2.9428
numProfessional 0.1025 (0.0242) 0.0657 0.1726
numSkilled 0.2657 (0.0839) 0.1258 0.3797
femaleHeadedHH 0.3789 (0.0957) 0.2433 0.5469
tribal 0.4255 (0.3141) 0 0.9582
urban 0.3272 (0.2331) 0 0.8954
farm 0.1565 (0.1489) 0 0.482
waterServices 0.4501 (0.2004) 0.1015 0.8688
propertyOwnedByHH 0.7835 (0.1372) 0.4467 0.9580

N 2014530

Table 56: Summary Statistics - Area Controls, Gauteng (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.0405 (0.1184) 0.7981 1.3089
africanHH 0.6793 (0.2167) 0.2586 0.9962
whiteHH 0.2454 (0.1689) 0.0001 0.6123
formalDwelling 0.6307 (0.1197) 0.2709 0.8067
roomsPerPerson 1.4128 (0.2938) 0.9911 1.935
sanitationFacilities 0.8207 (0.1405) 0.3909 0.9578
electricLighting 0.7896 (0.1282) 0.3636 0.9339
refuseCollection 0.8441 (0.1458) 0.1769 0.9425
hasTelephone 0.4369 (0.1493) 0.1312 0.7038
numPrimaryEd 2.4827 (0.2716) 1.9664 3.0063
numProfessional 0.2173 (0.0902) 0.0875 0.4018
numSkilled 0.3071 (0.0595) 0.1779 0.4343
femaleHeadedHH 0.2871 (0.0352) 0.2243 0.3679
urban 0.9668 (0.0522) 0.6009 1
farm 0.0301 (0.0518) 0 0.3991
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... table 56 continued
Variable Mean (Std. Dev.) Min. Max.

waterServices 0.8473 (0.0881) 0.5404 0.9354
propertyOwnedByHH 0.7462 (0.0945) 0.5638 0.9652

N 6890762

Table 57: Summary Statistics - Area Controls, Gauteng (IES Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.0342 (0.1071) 0.7981 1.3089
africanHH 0.6573 (0.1688) 0.2586 0.9962
whiteHH 0.2657 (0.1343) 0.0002 0.6123
formalDwelling 0.612 (0.1234) 0.2709 0.8067
roomsPerPerson 1.4352 (0.2389) 1.0932 1.935
sanitationFacilities 0.7892 (0.1389) 0.3909 0.9223
electricLighting 0.7565 (0.1285) 0.3636 0.9339
refuseCollection 0.8170 (0.1443) 0.1769 0.9404
hasTelephone 0.4258 (0.1459) 0.1312 0.7038
numPrimaryEd 2.4152 (0.1974) 1.9664 2.89
numProfessional 0.2111 (0.0845) 0.0875 0.4018
numSkilled 0.3192 (0.0599) 0.1779 0.4343
femaleHeadedHH 0.2739 (0.0251) 0.2243 0.3679
urban 0.9509 (0.0679) 0.6009 1
farm 0.0466 (0.0683) 0 0.3991
waterServices 0.8228 (0.0903) 0.5404 0.9254
propertyOwnedByHH 0.7433 (0.091) 0.5638 0.9652

N 6562701

Table 58: Summary Statistics - Area Controls, Mpumalanga (Cen-
sus Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.2763 (0.1695) 0.7241 1.47
africanHH 0.8868 (0.1282) 0.5485 0.9989
whiteHH 0.0924 (0.1096) 0 0.3866
formalDwelling 0.6092 (0.1262) 0.2238 0.8394
roomsPerPerson 1.2683 (0.1625) 1.0105 1.6376
sanitationFacilities 0.3324 (0.2854) 0.0067 0.8066
electricLighting 0.5553 (0.2103) 0.227 0.8781
refuseCollection 0.3545 (0.2731) 0.0034 0.8463
hasTelephone 0.1544 (0.1347) 0.0086 0.4275
numPrimaryEd 2.4051 (0.2835) 1.4859 2.8969
numProfessional 0.101 (0.0418) 0.0386 0.2582
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... table 58 continued
Variable Mean (Std. Dev.) Min. Max.

numSkilled 0.302 (0.1053) 0.1165 0.525
femaleHeadedHH 0.3778 (0.125) 0.1036 0.5654
tribal 0.4588 (0.4165) 0 1
urban 0.3924 (0.3039) 0 0.9521
farm 0.1241 (0.1673) 0 0.5725
waterServices 0.6094 (0.1764) 0.115 0.9009
propertyOwnedByHH 0.8373 (0.1503) 0.3076 0.9734

N 2775474

Table 59: Summary Statistics - Area Controls, Mpumalanga (IES
Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.2443 (0.1987) 0.7241 1.47
africanHH 0.8687 (0.1283) 0.5485 0.9989
whiteHH 0.1092 (0.1104) 0 0.3866
formalDwelling 0.5982 (0.1422) 0.2238 0.8341
roomsPerPerson 1.3046 (0.16) 1.0105 1.5908
sanitationFacilities 0.3552 (0.2776) 0.0067 0.7482
electricLighting 0.5658 (0.2013) 0.227 0.8781
refuseCollection 0.3712 (0.2653) 0.0034 0.8109
hasTelephone 0.1664 (0.1341) 0.0086 0.4275
numPrimaryEd 2.3302 (0.3473) 1.4859 2.8969
numProfessional 0.0971 (0.0464) 0.0386 0.2582
numSkilled 0.303 (0.1034) 0.1165 0.5214
femaleHeadedHH 0.3654 (0.1266) 0.1889 0.5654
tribal 0.3864 (0.4133) 0 1
urban 0.3993 (0.2905) 0 0.9521
farm 0.1694 (0.1834) 0 0.5725
waterServices 0.6024 (0.1773) 0.115 0.8201
propertyOwnedByHH 0.7993 (0.1613) 0.3221 0.9734

N 2645663

Table 60: Summary Statistics - Area Controls, Limpopo (Census
Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.3825 (0.1359) 0.7629 1.4913
africanHH 0.9678 (0.1017) 0.382 0.999
whiteHH 0.0251 (0.0892) 0 0.498
formalDwelling 0.5876 (0.1521) 0.2007 0.8118
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... table 60 continued
Variable Mean (Std. Dev.) Min. Max.

roomsPerPerson 1.1283 (0.1587) 0.9226 1.8452
sanitationFacilities 0.1095 (0.1621) 0.0068 0.8354
electricLighting 0.3553 (0.153) 0.088 0.8435
refuseCollection 0.106 (0.1314) 0.0048 0.6918
hasTelephone 0.0625 (0.0936) 0.0073 0.5831
numPrimaryEd 2.5192 (0.2821) 1.3906 2.8952
numProfessional 0.0921 (0.0362) 0.0528 0.3455
numSkilled 0.1334 (0.08) 0.0568 0.4594
femaleHeadedHH 0.5356 (0.0938) 0.1571 0.6547
tribal 0.8406 (0.2485) 0 1
urban 0.115 (0.1451) 0 0.6788
farm 0.039 (0.1258) 0 0.5769
waterServices 0.3328 (0.1649) 0.1387 0.8954
propertyOwnedByHH 0.9202 (0.1323) 0.2934 0.9854

N 4738988

Table 61: Summary Statistics - Area Controls, Limpopo (IES
Data)

Variable Mean (Std. Dev.) Min. Max.
logHHsize 1.3597 (0.1629) 0.7629 1.4913
africanHH 0.9540 (0.126) 0.382 0.999
whiteHH 0.0374 (0.1095) 0 0.498
formalDwelling 0.5768 (0.1561) 0.2007 0.8118
roomsPerPerson 1.1436 (0.1876) 0.9226 1.8452
sanitationFacilities 0.1328 (0.1932) 0.0068 0.8354
electricLighting 0.3804 (0.1689) 0.088 0.8435
refuseCollection 0.1236 (0.1569) 0.0048 0.6918
hasTelephone 0.0751 (0.1137) 0.0073 0.5831
numPrimaryEd 2.4655 (0.3107) 1.3906 2.8952
numProfessional 0.0932 (0.0408) 0.0528 0.3455
numSkilled 0.1441 (0.0963) 0.0568 0.4594
femaleHeadedHH 0.5248 (0.1125) 0.1571 0.6547
tribal 0.8025 (0.297) 0 1
urban 0.1348 (0.1737) 0 0.6788
farm 0.0576 (0.1545) 0 0.5769
waterServices 0.3503 (0.1874) 0.1387 0.8954
propertyOwnedByHH 0.9014 (0.1606) 0.2934 0.9854

N 4773999
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DataFirst is a research unit at the University of Cape Town engaged in promoting the long term preservation 
and reuse of data from African Socioeconomic surveys.  This includes:

•  the development and use of appropriate software for data curation to support the use of data for purposes    
   beyond those of initial survey projects

•  liaison with data producers - governments and research institutions - for the provision of data for reanalysis
•  research to improve the quality of African survey data

•  training of African data managers for better data curation on the continent
•  training of data users to advance quantitative skills in the region.

The above strategies support a well-resourced research-policy interface in South Africa, where data reuse 
by policy analysts in academia serves to refi ne inputs to government planning. 

www.dataf irst.uct.ac.za

Level 3, School of Economics Building, Middle Campus, University of Cape Town

Private Bag, Rondebosch 7701, Cape Town, South Africa

Tel:  +27 (0)21 650 5708
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