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Abstract

Asset indices have become widely used in a number of areas of social research, particularly

in the analysis of Demographic and Health Surveys. Indeed the calculation of “wealth indexes”

is now routine practice in the DHSs. Asset indices have been externally validated in a number

of contexts. While these indices have been shown to work well as proxy measures of poverty,

they are not suited to investigate inequality. In this paper we will show that, in fact, typical

asset indices also fail an internal validity test: they frequently rank individuals in ways which

violate the basic principle that individuals that have more (of anything) should be ranked

higher than individuals that have less. We consider from first principle what sort of indexes

might make sense, given the predominantly dummy variable nature of asset schedules. We

show that there is, in fact, a way to construct an asset index which does not violate some basic

principles and which also has the virtue that it can be used to construct “asset inequality”

measures. However, there is a need to pay careful attention to the components of the index.

We illustrate this by discussing the asset indices released publicly with South African DHS data

and then a South African case study of changes over time. Both situations show the perils of

mechanical approaches to calculating indexes. When calculating inequality using asset indices

on South African data we find high inequality in the DHS data but that inequality has decreased

markedly between 1993 and 2008. This contrasts with findings derived from income data which

suggest that inequality has hardly changed at all.

1 Introduction

Asset indices have become widely used since Filmer and Pritchett (2001) described a simple way to

calculate them. Their use really took off once the Demographic and Health Surveys incorporated

the calculation of a “wealth index” with the release of each dataset (Rutstein and Johnson 2004). A

recent Google Scholar search (April 18 2014) came up with 13 900 “hits” on “DHS wealth index”1,

2 434 citations of the Filmer and Pritchett (2001) article and 591 citations of the Rutstein and

Johnson (2004) paper documenting the creation of the DHS index. The main use of the indices

in this vast literature is in creating wealth rankings, separating the “rich” from the “poor” as

ingredients for more substantive analyses.

Several articles, including the original Filmer and Pritchett (2001) piece, have tried to validate

these indices against external criteria, e.g. incomes or expenditures. A recent review (Filmer and

1Although this count will include double-counting of some referring papers.
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Scott 2012) concludes that “the use of an asset index can clearly provide useful guidance to the

order of magnitude of rich-poor differentials” (p.389), although the asset indices measure a different

concept than per capita consumption. Indeed the paper devotes attention to the question under

which circumstances the two measures will provide the most similar rankings, arguing that this

will occur when per capita expenditures are well explained by observed household and community

characteristics and when “public goods” are more important in household expenditures than “pri-

vate ones” like food. In other work we have ourselves argued that asset indices do a good job of

proxying for income differences (Wittenberg 2009, Wittenberg 2011).

None of this literature has examined whether the asset indices calculated in the traditional way

make sense internally, i.e. according to a number of simple criteria such as that individuals that

have more (of anything) should be ranked higher than individuals that have less. In particular little

attention has been paid to the problems created by the predominantly dummy variable nature of

asset schedules. We show that this is not just a theoretical issue but that DHS wealth indices in a

number of cases exhibit anomalous rankings.

One additional issue that has been lamented in some contexts is that the way in which these

indices are typically calculated precludes the use of traditional inequality measures. One might

think that if it makes sense to talk about inequality in incomes or wealth that it would certainly

make sense to think about inequality in asset holdings (Bhorat and van der Westhuizen 2013).

Nevertheless manipulating traditional indices is not a viable strategy (Wittenberg 2013), a different

approach is needed. As we show below, it is when we consider the particular problems of calculating

inequality measures with dummy variables that many problems with the creation of asset indices

crystallise. However we show that these problems are not insuperable. Indeed an approach due

to Banerjee (2010) for dealing with multidimensional inequality can be used to create such asset

indices, as we will show below.

We show that this approach is easy to implement and apply it to South African data. This

provides a new perspective on the evolution of South African inequality which is somewhat at odds

with the literature measuring inequality with money-metric approaches. We think it is likely that

the asset approach reveals genuine improvements over time, although the reduction in inequality is

unlikely to be as dramatic as the Gini coefficients calculated on the asset indices suggest. We think

that more detailed asset inventories would moderate some of the conclusions. Indeed one of our

key points is that asset indices need to be approached with some caution — churning out “wealth

indices” in semi-automated ways without considering in detail what the individual scores suggests,

is likely to be problematic.

The plan of the paper is as follows. In Section 2 we provide a very brief overview of the

theoretical literature dealing with asset indices. We follow by enunciating several principles for the

creation of such indices in section 3. We refer to these as “principles” since our approach is not fully

axiomatic. Our approach is more heuristic — investigating what happens when we apply different

approaches to simple data and considering whether the answers make sense. We do this in sections

4 through 6, where we consider first the case of a single binary variable and then progressively

consider more complicated cases. In each case we consider both the index itself and what it might

mean to estimate inequality with it. Having set out what we consider to be a defensible approach,

we turn to applying it to DHS data in section 7. Finally we consider what assets may tell us about

the evolution of inequality in South Africa from 1993 to 2008.

The chief contributions of our paper to the literature are both negative and positive. On the

negative side we show that there are anomalies embedded deep in the predominant approaches for

creating asset indices, which users should be aware of before blithely adopting them. On the positive
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side, this paper: (1) describes how to construct an asset index that is internally coherent; (2) shows

that inequality measures on this index are well-defined and have reasonable interpretations; (3)

provides a fresh perspective on South African inequality; and (4) provides some perspective on the

“art” of index construction.

2 Literature review

McKenzie (2005, p.232) suggests that the idea of using the first principal component of a set of

asset variables as an index for “wealth” has been around in the social science literature for a long

time. Its use, however, has become common only after publication of the Filmer and Pritchett

(2001) paper and the subsequent adoption of the methodology in the release of the DHS “wealth

indices” (Rutstein and Johnson 2004). The basic idea of principal components is to find the linear

combination of the asset variables that maximisises the variance of this combination. More formally,

if we have  random variables 1     , each standardised to be of mean zero and variance one,

the objective is to rewrite these as

1 = 111 + 122 +   + 1

2 = 211 + 222 +   + 2

... (1)

 = 11 + 22 +   + 2

where the  are unobserved components, created so as to be orthogonal to each other. Writing

this in vector notation as

a = VA

it follows that the covariance matrix (here equal to the correlation matrix R) is given by

 (aa0) = 
¡
VAA0V0¢

R = VΦV0

where Φ = 
¡
AA0¢. Note that Φ is diagonal since the unobserved components are assumed to

be orthogonal to each other. We need to impose some normalisation in order to get a determinate

solution. Let Φ be the matrix of eigenvalues, V the orthonormal matrix of eigenvectors, and assume

that V is ordered so that the eigenvector associated with the largest eigenvalue is listed first. We

can then solve for A to get

A = V0a

in particular

1 = 111 + 212 +   + 1 (2)

We will refer to this as the PCA index. By assumption  (1) = 1, the first eigenvalue, and

we can show that no other linear combination of the  variables will achieve a greater variance

(Wittenberg 2009, pp.5—6).
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If the asset variables  do not have unit variance and zero mean, they are first standardised, so

that the equation for the first principal component will be given by

1 = 11

µ
1 − 1

1

¶
+ 21

µ
2 − 2

2

¶
+   + 1

µ
 − 



¶
=

11

1
1 +

21

2
2 +   +

1


 −  (3)

where the coefficients 1 are the elements of the eigenvector v1 associated with the largest eigenvalue

1 of the correlation matrix R of the  variables. The constant  is the weighted sum of the means,

which ensures that 1 has a zero mean.

The use of the first principal component was defended by Filmer and Pritchett (2001) on a

“latent variable” interpretation of the equations 1: 1 is whatever explains most of what is common

to 1 2      and it makes most sense to think of this as “wealth”. Other authors have taken

this formulation more seriously and have suggested that other procedures, such as factor analysis,

be used to retrieve the common latent variable (Sahn and Stifel 2003). Although the procedure

produces a different index than the PCA one, in practice indices calculated by both approaches

are highly correlated, particularly since authors using this approach seem to restrict themselves to

extracting only one factor and eschew the “orthogonal rotations” that produce arbitrarily many

solutions2.

Reviews of the procedure have focussed on several issues. Firstly if the assets are measured

mainly through categorical variables, then the index defined through equation 2 is intrinsically

discrete. The more assets and the more integer-valued variables (e.g. number of rooms) are included

in the index, the smoother the resulting index will be and the better its potential to differentiate finer

gradations of poverty (McKenzie 2005). Secondly, if categorical variables with multiple categories

are included (e.g. water access), then the resulting group of dummy variables will be internally

negatively correlated with each other in ways that will influence the construction of the index. Some

authors have used multiple correspondence analysis instead (Booysen, van der Berg, von Maltitz

and du Rand 2008). Unfortunately it cannot accommodate continuous variables. In practice the

PCA index is highly correlated with the MCA index also.

A third issue which has received some attention is whether or not the index should include

infrastructure variables (like access to water and sanitation). Houweling, Kunst and Mackenbach

(2003) tested the PCA index rankings for sensitivity to the assets included. They were concerned

about the fact that the infrastructure assets might have independent effects on the outcome of

interest, in particular child mortality. They show that the rankings change somewhat as some of

the “assets” are stripped out.

Several authors have tried to validate asset indices against external benchmarks. We have

already referred to the Filmer and Scott (2012) review article. They found that different techniques

for constructing asset indices tended to get results that were highly correlated with each other, but

in some cases differing from the rankings implied by per capita consumption. This is not thought to

be a problem in principle, since it is possible that assets may be a more reliable indicator of long-run

economic well-being. They may also be measured with less error (Filmer and Pritchett 2001, Sahn

and Stifel 2003).

One noteworthy finding in the Filmer and Scott (2012) article is that urban-rural differences

tend to be more marked when using asset indices than when using per capita expenditure. This

2For a more detailed discussion of the factor analysis approach, see Wittenberg (2009).
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may, however, be a result of the fact that many of the household durable goods that make up asset

schedules (e.g. televisions, refrigerators) require electricity which tends to be more accessible in

urban areas. Indeed we have argued that both principal components and factor analysis will tend

to extract an index which is a hybrid of “wealth” and “urbanness” (Wittenberg 2009). We will

show below that the asset index values rural assets (in particular livestock) negatively, thus making

rural asset holders look poorer than they should. We will suggest that the urban-rural differences

are actually exaggerated by the indexes.

3 Principles for the creation of asset indices

Intuitively all the justifications for the creation of an asset index rely on the idea that higher asset

holdings should convert into a higher index number and, conversely, a higher index number should

imply greater wealth. This is a simple, yet obvious, internal consistency requirement. We shall

refer to this as the monotonicity principle. In order to outline this more rigorously we first define

what we mean by an asset and an asset index.

Assets we define as goods that provide (potentially) a stream of benefits. An asset variable 

will be a random variable such that  is either the quantity or the value or the presence/absence

of the asset. This excludes bads. We also therefore do not allow  to be negative.

Definition 1 Let (1 2     ) ∈ < be a vector of asset holdings. The function  : < → <
defined for all possible asset holdings is called an asset index.

Typically we will restrict attention to linear asset indices, i.e. indices that can be written in

form  (1 2     ) = 11 + 22 +   + .

Principle 2 Let  (1 2     ) be an asset index. The asset index is monotonic if, and only

if

(1 2     ) ≥ (∗1 ∗2     ∗) =⇒  (1 2     ) ≥  (∗1 
∗
2     

∗
)

Note that this is a fairly weak condition. It does, not, for instance, rule out “inferior” assets. For

instance if we had an asset schedule that listed different types of stoves: e.g. electric, paraffin, coal

or gas, the corresponding “ownership” vectors might be recorded as (1 0 0 0), (0 1 0 0), (0 0 1 0)

and (0 0 0 1) respectively. Since none of these vectors is numerically bigger than the other, there

is no restriction on how the Asset index should rank them either. However if these are not recorded

as mutually exclusive categories, then an individual that owned both an electric stove and a gas

stove should receive a higher asset index than one that owns only an electric stove.

The second principle that we require is that the index must be ratio-scale, i.e. it must have an

absolute zero. This is indispensable if we want to calculate inequality measures on the index,

since it is not valid to calculate “shares” (required to construct, for instance, the Lorenz curve)

if the variable is not ratio-scale. It implies in particular that the index must be able to recognise

individuals or households that own nothing.

Principle 3 Let  (1 2     ) be an asset index. The asset index has an absolute zero if,

and only if

 (0 0     0) = 0
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Obviously this principle is violated by all of the current asset indices, except those that simply

sum up the number of assets. Nevertheless it is arguable that if the notion of “asset holdings” is to

have any meaning it is only in relation to individuals that don’t have any. Even for purely ranking

exercises, it is conceptually necessary that it makes sense to define the “have-nots” and that they

should rank at the bottom.

Assuming that the previous two principles hold, it then makes sense to consider inequality

measures on the space of asset index measures. However we will investigate also inequality measures

defined directly on vectors of asset holdings.

Principle 4 We will say that the asset inequality measure  is robust if it can be applied to asset

vectors of dummy variables as well as to continuous ones.

Robustness is not a conceptual requirement, but it is desirable nonetheless, given that the asset

information is typically dummy variable based. Theoretically there is no reason why one shouldn’t

construct different types of measures for different types of data. It is, however, much simpler if

the approach can accommodate these differences. One big advantage of robust measures is that we

know what the measures mean when the underlying data is of the continuous type that standard

social welfare accounts treat. When these measures are applied to dummy variables, however, the

interpretation becomes more complex. Robustness in this case means that the “standard” and

“non-standard” treatments are part of the same continuum, so that if the measurement of the

variable were to improve over time, we would only need to tweak our approach rather than switch

completely. It is easier to see what this means by turning directly to the simplest case of all.

4 One binary variable

Consider first the case where we have precisely one binary variable, e.g. we know whether or not

the respondent owns a television set. Note that in this case the only possible “asset index” is the

variable itself. Note also that we cannot analyse these data “from first principles” according to the

typical axioms of inequality measurement, since these type of data will not support the “principle of

transfers” — it is impossible to take away an asset from person  and give it to person  without them

changing places in the distribution. Furthermore such a “trade” (by the principle of anonymity)

would leave the distribution precisely unchanged. Furthermore ratio-scale independence doesn’t

hold either, since rescaling of the variable does not provide a valid asset distribution.

4.1 Standard inequality measures

Many of the standard inequality measures (e.g. Atkinson indices) will not provide valid answers in

the presence of zeroes. Nevertheless some do, with the Gini coefficient the most common example.

It is instructive to consider what the Gini of such a variable would measure. Assume that there

are 0 observations with zeroes and 1 ones. Let the proportion of ones be , i.e.  =
1

where

 = 0 + 1. The Lorenz curve of this distribution is shown in Figure 1. The Gini coefficient is

simply3 1− .

This is not an unattractive choice as a measure of inequality: if everyone has the asset then

the Gini is zero; as → 0, i.e. the asset becomes concentrated in a smaller and smaller group, the

3Wagstaff (2005)provides a discussion of “concentration indices” for the case where the dependent variable is

binary. This value for the Gini coefficient is a special case of his more general result.
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Figure 1: The Lorenz curve of a binary variable

index approaches one. It is obvious that given the paucity of information in the binary variable any

“measure” of inequality must be, in some sense, a function of .

There are some alternatives. For instance, the coefficient of variation applied to the binary

variable would yield
q

1−

. This again yields a measure of zero when  = 1, but in this case the

index of inequality approaches +∞ as → 0.

Obviously both measures break down at  = 0. Indeed in a world in which nobody has the

“asset” it seems hard to define what inequality in the possession of that asset would mean. It is also

worth noting that both measures give meaningful results only if the variable records the possession

of a “good”. If the variable measures a deprivation it should be recoded first.

4.2 The Cowell-Flachaire measures

An alternative to the cardinally based measures is the approach for ordinal variables proposed by

Cowell and Flachaire (2012). These require us to measure the status of everyone in the distribution

where this is simply the count of everyone of equal rank or lower (“downward” measure) or alter-

natively everyone of equal rank or higher (“upward” measure). Both are expressed as proportions

of the population. The vector of status measures s =(1 2   ) is then used to calculate an

inequality measure, relative to a “reference” status, which Cowell and Flachaire suggest should be

set to 1. The inequality measures then become:

 =

⎧⎨⎩ 1
(−1)

∙
1


P
=1

 − 1
¸

if  6= 0 1
− 1



P
=1 log  if  = 0

A virtue of this set of measures is that it is invariant to the way in which the ordinal variable is

“cardinalised”, since the cardinalisation will not affect the ranking of individuals in the distribution.
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Figure 2: The Cowell-Flachaire 0 index as a function of .

In the case of our binary variable we get the following status values:

Value  (“downward”) 0 (“upward”)
1 1 

0 1−  1

Consequently the “downward” measure would be

 =

(
(1−)
(−1) [(1− )

 − 1] if  6= 0 1
− (1− ) log (1− ) if  = 0

while the “upward” measure would be

 =

½ 
(−1) [

 − 1] if  6= 0 1
− log  if  = 0

Low values of  emphasize inequality at the bottom of the distribution — the deprivation of

those without the assets is felt more — while for  values close to one what happens at the top is

more accentuated. Note that when  = 0 or  = 1 inequality is zero. Indeed by considering the

second derivative of  it is clear that this measure of inequality has an inverse “U” shaped curve

as shown in Figure 2 for the case  = 0.

It is worth noting that the variance of the distribution (which is also sometimes used as a

measure of inequality) also exhibits this sort of pattern with a low measure of inquality near  = 0

and  = 1 respectively.

4.3 The meaning of asset inequality

The difference in the behaviour of the two groups of inequality “measures”, viz. monotonic decrease

in inequality as  goes from near zero to one versus inverse “U” shaped, raises fundamental questions

about how we interpret the contrast between the “haves” and the “have nots”. In the Gini and

C.V. interpretation that gulf is the central feature of the distribution — so if 99% of the population

are lacking the asset but 1% have it, that is the most salient fact about the distribution. In the
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Cowell-Flachaire view if most of the population shares the deprivation, then most outcomes are

very similar to each other, i.e. there is not a lot of inequality.

Which of these perspectives is right? Consider a “satisfaction with life” variable that has been

measured on a Likert scale ranging from 1 (very dissatisfied) to 5 (very satisfied). Let 99% of the

population record a “3” (i.e. neutral) but 1% rate above that. This variable could be dichotomised

as a 0/1 binary variable with the “satisfied” responses scored as 1 while those below recorded as zero.

This distribution probably shouldn’t rate as very unequal, so in this context the Cowell-Flachaire

measure seems more reasonable than the equivalent Gini. Note, however, that the Cowell-Flachaire

measure is invariant to linear translation — i.e. we would get the same measure whether 99% respond

“3” and 1% “4” or whether 99% answer “4” and 1% “5” or indeed 99% “1” and 1% “5”. Indeed the

reason why these all give the same distributional measure is that the conversion of the underlying

phenomenon into a cardinal measure is arbitrary.

The central question is therefore to what extent the binary variable is an arbitrary coding of

the underlying distribution. The crucial difference is not so much what the “1” codes for (since

that could stand for almost any value), but whether the 0 can be thought of as absolute. Indeed as

we noted in the previous section, the Gini coefficient is sensible only if the variable is ratio-scale,

i.e. if the zero is absolute.The reason why the Gini scores inequality so highly when  is low is

that the gulf between having nothing and having something is enormous. This is true, however,

only if the “0” is really nothing and “1” signals the real possession of an asset (e.g. car). Some

of the variables typically used in the construction of asset indices need to be thought about very

carefully in this context. For instance a dummy variable for “tiled roof” obviously really measures

the presence of absence of a “tiled roof”. Nevertheless the absence of a tiled roof does not imply

the absence of all roofs; whether or not the gap between owning a thatched roof and a tiled roof is

as vast as the gap between having nothing and having something is debatable.

Nonetheless many of the assets do measure material gaps — ownership of a car or of a television

are examples. Some infrastructure variables arguably also satisfy this criterion. The presence or

absence of water in the house may be such a salient difference that the “0” really denotes a key

absence. For variables like these the Gini measure seems closer to our intuition of how we would

think about “asset inequality”.

We take two points away from this discussion. Firstly one needs to think quite carefully about

what variables one wants to include in one’s measure of “asset inequality”. If the variables in ques-

tion are, at best, ordinal quality of life measures (e.g “tiled roof”), then the appropriate “inequality

measure” needs to be an ordinal one, like the Cowell-Flachaire approach. Secondly, if the binary

variable really captures the presence or absence of a real asset, then the behaviour of the Gini

coefficient accords more closely with our intuition of “asset inequality”. Nevertheless we accept

that this is a judgement issue and that different analysts might come to different conclusions.

5 Two binary variables

We turn now to consider the case where we have two binary variables. We could obviously analyse

both variables separately, but we might want to combine the information to arrive at some overall

measure of “asset inequality”. There are several potential ways of doing this. Firstly we could

combine the two variables into one scale (an “asset index”) and then apply some inequality measure

to that scale. Depending on whether we think of the scale as giving us cardinal or ordinal values we

could use either a standard inequality measure or the Cowell-Flachaire ordinal measures. Secondly

we could utilise some of the approaches in the “multidimensional inequality” literature.
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5.1 Some preliminaries

First, however, we will rehearse some of the issues that make the two variable case more complicated.

To make the discussion more precise, let us presume that the empirical information on the two binary

variables 1 and 2 is contained in the following matrix

X =
£
x1 x2

¤
=

⎡⎢⎢⎣
01 01
12 02
03 13
14 14

⎤⎥⎥⎦ (4)

where 0 is the  null vector [0 0  0]
0
and 1 is the  vector of ones [1 1  1]

0
. Let  =P

  , and 1 =
2+4


, 2 =
3+4


and 12 =
4

, i.e. 1 is the proportion of the population that

owns asset 1, 2 is the proportion that owns asset 2 and 12 is the proportion owning both. Without

loss of generality let us assume that 1 ≥ 2, i.e. the second asset is rarer in the population than

the first.

Besides the general case we will also consider the polar cases:

• Special case 1:
2 = 3 = 0, i.e. x1 = x2 =

£
01 14

¤0
with 1 = 2 = 12; and

• Special case 2:
1 = 4 = 0 in which case x1 = 1− x2 with 1 = 1− 2, and 12 = 0.

What distinguishes the cases is that the correlation between the two variables is positive in the

former, while it is negative in the latter. The literature on multidimensional inequality measurement

speaks about a “correlation increasing majorization” (e.g. Tsui 1999, p.150). Intuitively the second

case, in which everyone has an asset should be less unequal than the first in which some people

have nothing and some have everything. In general we would like a measure of inequality that is

true to that intuition.

We turn now to the first method, that of combining the two variables into one scale.

5.2 Creating an asset index

As noted above, one of the most common ways of creating an asset index is by means of principal

components. Applying the PCA formula mechanically we can derive the values of the asset index in

terms of 1, 2, and 12 (see appendix A.1, in particular the table). Several insights follow from an

examination of those formulae. Trivially, since the mean of the variables (by construction) is zero

and they include positive and negative values we cannot use traditional inequality measures on these

values. Secondly, however, the range of the index is a function of the ranges of the standardised

variables e1 and e2. Those are of the form q
1−1
1

+
q

1
1−1 . These are unbounded near zero and

one and follow a “U” shape, with minimum at 1 =
1
2
. As an “inequality statistic” the range (and

hence dispersion) of the asset index therefore works inversely to the Cowell-Flachaire statistic for

the univariate case. It is unlikely to communicate useful information about real inequality in the

distribution of assets. This is the contrary to the intuition, expressed for instance by McKenzie

(2005), that the dispersion of the index could be a measure of inequality.
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Table 1: An example where conventional asset indices produce perverse rankings
Example: 1 = 07, 2 = 04, 12 = 02, 12  12

Assets proportion PCA FA MCA

(1 0) 0.5 −1 040 3 −053318 −089322
(1 1) 0.2 0403 12 020661 034613

(0 0) 0.1 0502 77 025769 043170

(0 1) 0.2 1 946 1 099748 16711

A third point emerges from the fact that the “weight” assigned to asset 1 is sgn (), which is

negative if 12  12. Indeed whenever 12  12 the asset scores give the following ranking:

(1 0) ≺ (0 0) and (1 1) ≺ (0 1), i.e. a person who has the more common asset is always ranked
below a person who does not have the asset (see the second column of the table in the appendix

A.1). How can this possibly make sense? The problem arises from the fact that the principal

components analysis correctly isolates the negative correlation between the two assets. But the PCA

procedure is intended to isolate what is common to both; this quandary is resolved by interpreting

1 as a “bad” instead of a genuine asset. Given the philosophy of the PCA approach this is

understandable, but it is problematic in this context nonetheless.

Indeed it is not difficult to construct examples where the first asset becomes such an intense

“bad” that a person having no assets gets a higher score than an individual with both assets. We

show one example in Table 1. Indeed whenever 1 − 1  2  1 the PCA rankings will produce

such a perverse outcome. Table 1 also shows that the principal components method is not unique

in this regard: the most popular alternatives, viz. factor analysis (with one factor) and multiple

correspondence analysis produce precisely the same perverse ranking. Indeed any “latent variable”

approach to index construction is forced in this direction, since that approach can make sense of the

negative correlation between the assets only if one of them is positively correlated with the latent

variable and the other negatively so.

Is this case relevant for empirical analyses? There are, in fact, many practical examples where

“assets” acquire negative weights in principal components procedures. In the South African case

(as shown below) ownership of cattle is frequently negatively correlated with the ownership of other

asset types, mainly because cattle are a typically “rural” asset while the other assets require a

connection to the electricity grid.

Given these issues it would be wise to restrict the construction of “latent variable” asset indices to

situations where the assets are positively correlated — although that would be a nontrivial limitation.

Nevertheless even in these cases the question of how to deal with the negative values created by

the estimation process remains. One possible response would be to add a positive constant to all

index values big enough to ensure that only non-negative values remain. Linear translations of this

sort have been used in some cases (Sahn and Stifel (2000, p.2126), Bhorat and van der Westhuizen

(2013)). The problem is that while these shifts maintain the rankings, the Gini coefficients are not

invariant to such transformations. Indeed Lorenz dominance on sub-groups can be reversed (see

Wittenberg 2013).

5.3 Creating an ordinal scale

With two binary variables there are four possible outcomes, i.e. four possible values for any com-

bined scale. If we can rank the value of the two assets, e.g. if having the 1 asset is preferred
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to having the 2 asset, then we know that (1 0) Â (0 1). But then we can rank all outcomes, in
the obvious way i.e. (1 1) Â (1 0) Â (0 1) Â (0 0). Even if we cannot cardinalise these bundles,
we could use the Cowell-Flachaire approach to create inequality measures. Indeed one of their

examples is precisely of this form.

One problem with this approach is that it doesn’t take into account the correlation between

the two assets. Consider, for instance, two assets that can be ranked (e.g. ownership of car versus

ownership of television) and assume that precisely half of the population have cars and the other

half have televisions. Assume now that we “redistribute” the televisions to those who have cars,

i.e. we now have half of the population that have cars and televisions and half that have nothing.

The Cowell-Flachaire measures will report the same inequality measures before and after, despite

the fact that the distribution has got a lot more unequal.

Additional problems arise if there are more than two binary variables, because we would then

need to know how owning two lower ranking assets (e.g. a television and a cell phone) rank relative

to owning only the most desirable asset (e.g. a car). There are 2 possible bundles with  binary

variables and we would need to be able to rank all of them. In practice, with more than two variables

this approach is likely to be intractable. Consequently we will not pursue these possibilities further.

6 Multidimensional inequality indices

The literature dealing with multidimensional indices tends to approach the issue axiomatically,

i.e. develop multidimensional analogues of properties such as that Pigou-Dalton transfers decrease

inequality. Tsui (1999, Theorem 3) proves that an inequality measure that respects a set of these

axioms must be a transformation of a multidimensional extension of the “Generalized Entropy”

measures. In the two variable case these become (Tsui 1999, Corollary 1):

 =
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where (1 2) 6= (0 0)  (0 1)  (1 0)  (1 1), 1 (1 − 1)  0, 12 (1− 1 − 2)  0 in the first equa-

tion. We haven’t listed the parameter restrictions for the second equation onwards. Indeed all but

the first version are not defined for vectors of binary variables.

The first version yields an inequality index of

 = 

∙
12

11 
2
2

− 1
¸

This has certain attractive features, provided that , 1 and 2 are all positive
4. Inequality increases

as 12 increases, so as the correlation between 1 and 2 increases measured inequality increases.

4This is possible, however, only if we ignore the parameter restrictions — strictly speaking 1 and 2 have to be

both positive, otherwise



 is not defined for cases where  = 0. This, however implies that   0 (from

the first condition) which precisely reverses the implications.
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As either 1 or 2. approaches zero the index becomes arbitrarily large and if 1 = 2 = 12 = 1

inequality is zero. But paradoxically the index is at a minimum when 12 = 0 even if 1 + 2 is

far from one (e.g. if there are exactly two people who own assets, but each owns only one). The

problem, of course, is that the product
³
1
1

´1 ³
2
2

´2
is zero whenever either 1 or 2 is zero,

so any distribution in which nobody has all assets will score −.
This is a major limitation of this approach, though we have taken liberties with Tsui’s formulae,

since they are designed to be used with positive .

6.1 The multidimensional Gini

An alternative “multidimensional” inequality measure is the multidimensional Gini proposed by

Banerjee (2010). The procedure harks back to the first approach, i.e. creating a linear combination

of the variables on which the Gini coefficient is then estimated. Again the weights on the components

are given by the elements of an eigenvector of a cross-product matrix, but in this case the variables

are not demeaned, so that the moments, as it were, are calculated around zero rather than the mean.

As a result the weights are compelled to be positive. Banerjee proves that when applied to standard

continuous non-negative variables this approach provides an inequality index that satisfies all of

the key axioms, but also shows increasing inequality if a “correlation increasing transfer” occurs.

More concretely Banerjee suggests that variables should first be divided by their mean. In our

case transforming the original data matrix X (given in equation 4) we get.

A =

⎡⎢⎢⎢⎣
01 01
1
p1 2

02

03
1
p2 3

1
p1 4

1
p2 4

⎤⎥⎥⎥⎦
where 1

p 
should be interpreted in the obvious way as the  column vector containing

1

in every

element. It follows that
1


A0A =

∙ 1
1

12
12

12
12

1
2

¸
A (non-normalised) eigenvector associated with the maximal eigenvalue is

h
2−1+

√
(2−1)2+4212
212

1

i0
provided that 12 6= 0. If 12 = 0 then the maximal eigenvalue is 1

2
with associated eigenvector£

0 1
¤
. The “index values” (up to a multiplicative constant) for this case are given in Table 2.

If 12 6= 0 (and still assuming that 2 ≤ 1) we can show that the index will order the asset

bundles as (0 0) ≺ (1 0) ≺ (0 1) ≺ (1 1). However when 12 = 0, i.e. the vectors of asset holdings

are completely orthogonal, then the first asset gets a weight of zero, i.e.  (0 0) =  (1 0) = 0.

This does not create perverse rankings, but it does mean that asset one is completely ignored.

This illustrates why Banerjee in his proofs requires that there be at least one individual who owns

positive quantities of all assets. In this context this would require 12  0. This is undoubtedly

a limitation, although one not nearly as severe as the requirement that the assets be positively

correlated.

Table 2 also gives the Gini coefficient for this case. In fact, as we show in the appendix (section
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Table 2: Index values for the uncentered principal components procedure of Banerjee

Bundle Probability Value () Case 1: 1 = 2
(0 0) 1− 1 − 2 + 12 0 0

(1 0) 1 − 12
2−1+

√
(2−1)2+4212
2121

1
2

(0 1) 2 − 12
1
2

1
2

(1 1) 12
2−1+

√
(2−1)2+4212
2121

+ 1
2

2
2

Gini 1− 2 − (1 + 2 − 212) (1 − 12)1 − 12 (1 − 2)1 1− 22 + 212 − 212
2

where 1 =
2−1+

√
(2−1)2+4212

1


2−1+

√
(2−1)2+4212+212



A.2) the formula

 = 1− 2 − (1 + 2 − 212) (1 − 12)1 − 12 (1 − 2)1 (5)

where 1 =
1

11 + 22
(6)

is valid for any asset index which scores the assets as  (0 0) = 0,  (1 0) = 1,  (0 1) = 2,

 (1 1) = 1 + 2.The formula is interesting, because it shows that 1 − 2 is an upper bound for

the Gini as the expressions in brackets in the third and fourth term both have to be nonnegative.

So the proportion of the less common asset is the key determinant for inequality overall. In the

extreme case where 1 = 2 = 12, i.e. where the society splits into two groups one which owns

nothing and one which owns both assets, the upper bound is reached. Indeed it is also reached in

the case we have ruled out, where 12 = 0, because then asset 1 is scored as having value zero,

i.e. 1 = 0. It turns out that the behaviour of the asset index and the associated Gini coefficient

depends critically on 12. The rarer 12 is, the more the procedure downvalues the first asset. This

is accentuated by the size of the gap between 1 and 2.

One interesting special case is if 1 = 2. Then the Gini approaches 1 − 22 as 12 → 0 i.e. it

treats the two assets equally and inequality gets measured according to who has any assets versus

who has none. This is an attractive property although the probability of finding such a balanced

relationship in any “real world” application is zero. Nevertheless the limiting value of 1−22 serves
as a lower bound to the Gini coefficients that can be achieved.

6.2 Sum of assets

It is instructive to consider any “asset index” which fixes the value of each asset ex ante. The simple

sum of assets (setting  (1 0) =  (0 1) = 1) is a particularly straightforward example. Note that

1 (equation 6) is still a function of 1 and 2 (i.e.
1

1+2
). In this case the Gini will be decreasing

in 1, 2 and increasing in 12. Of course the reason why many analysts feel uncomfortable in

simple summing up assets is that we are directly equating apples and pears. Why would we want

to equate asset 1 and asset 2 in this way? In many practical cases (e.g. "car" and "radio") this is

not appealing. The attraction of procedures like principal components (and related techniques) is

that they decide on the weightings given the overall correlation structure in the data. Assets that

are typically owned together receive a higher weight. The uncentered principal components index

proposed by Banerjee also has this flavour — assets that are nearly orthogonal to the other assets

will receive low weights.
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6.3 Some provisional lessons

The key lesson is that the process of deriving weights for the asset index needs to be handled with

care. The conventional PCA, factor analysis or MCA procedures can yield negative weights. Simply

dropping these variables from the analysis (if they are genuine assets) is likely to skew the results

in other ways. The uncentered PCA of Banerjee can handle these cases, provided that ownership

of these assets is not completely orthogonal to that of the other assets. Nevertheless in situations

where the overlap of asset holdings is relatively small these unconventional assets may be down-

valued. Inspecting both the asset scores and the resulting rankings before doing any substantive

analysis seems important.

7 Application to the DHS wealth indices

The documentation released with the Demographic and Health Surveys doesn’t give the scores

according to which the wealth index is calculated. The general approach is outlined in the paper by

Rutstein and Johnson (2004). As many assets as possible are used, including country-specific ones.

Theoretically it should be possible to back out the coefficients by regressing the index on indicators

for all asset variables that might be considered. The regression should fit perfectly. Doing this on

the South African Demographic and Health Survey we managed to get an 2 of 0999 which is

close, but not exactly equal to one. The coefficients on several key variables are shown in the first

column of Table 3. The most important point for our purposes is the fact that the coefficients on

the two livestock variables (possession of a donkey or horse, and possession of sheep or cattle) are

both negative. It follows that individuals that have no assets will rank above individuals who have

only donkey and/or cattle. Indeed if we search for the poorest individuals (according to the wealth

index) they invariably own livestock.

In order to investigate this further we categorise individuals in terms of their possession (or

otherwise) of “real” assets. We excluded building materials from the list and included only water

piped inside the house and access to electricity. The list is shown in Table 3. The minimal possible

asset holding corresponds to one room with nothing else. Households in the DHS with such minimal

assets could have a large range of “wealth index” numbers, depending on what building material

their accommodation was made of. Interestingly, however, 13% of individuals who had a higher

asset holding (typically livestock with more rooms), nevertheless had a lower wealth index than

the mean score among those with no moveable possessions. Indeed the richest person among those

with no water in the house, no electricity, one room and no durables was better off (according to

the wealth index) than 47% of individuals who had at least something on top of one room.

In order to explore the relationship between livestock ownership and other forms of assets

further, we constructed a series of asset indices using our more restrictive list of assets. Besides the

uncentered principal components index (labelled UC PCA in Table 3) we also constructed indices

using PCA, MCA and Factor Analysis. The first point to note is that the negative weighting on

livestock ownership is a feature of all the “latent variable” indices. The coefficients shown in Table

3 are those on the untransformed variables, i.e. in the case of PCA they are  (see equation

3).

The second point to note is that the uncentered PCA also has its bizarre feature: in this case

it is the extremely large implied coefficient on ownership of a motor cycle. The reason for this is

that the coefficient is  where  is the score from the principal components calculation and 
is due to the standardisation suggested by Banerjee. As Table 4 shows, motor cycles are owned by
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very few South Africans and consequently the score becomes inflated in ways which are unlikely to

reflect their real asset status. Consequently we decided to drop this variable and recalculate the

index (the results are shown in column 3). Ownership of a personal computer now gets the highest

score although its magnitude is not as outlandish as that for the motorcycle.

Similarly we also recalculated the PCA index without the livestock variables, to provide the

fairest comparison between the two techniques. This, however, did not have much of an impact on

the remaining coefficients, as can be seen by comparing columns 4 and 5 in Table 3. It will, of course,

remove the anomalies noted earlier. Individuals owning livestock will now appear indistinguishable

from individuals owning nothing. What is the impact of this for the identification of deprivation?

One simple check is to divide the population up into quintiles according to the two indices and

to see how well they compare. Table 5 performs that analysis. We see that there are some key

differences. The starkest contrast is provided by the 175 households which are rated in the bottom

quintile according to the PCA index but are rated at the top of the UC PCA. Looking at the means

of the asset variables it emerges that all of them owned horses/donkeys, 76% of them also owned

sheep or cattle and 75% of them also owned a radio. Ownership of horses and/or donkeys is a

significant asset according to the uncentered PCA. Perhaps the coefficient is on the large side, but

it is unlikely that households that own both types of livestock should truly be ranked among the

poorest of the poor (the bottom 20%). Of course the original PCA index would have ranked many

of these households below the “poorest of the poor” (given the negative value on those assets).

In Table 6 we present the correlation matrix between the different asset indices. Although

we have used fewer assets in our version of the principal components scores, they are still highly

correlated with the wealth index released with the DHS. All the “latent variable” index formulations

end up highly correlated. The two uncentered PCA indices show much lower correlations. The

first of these has very low correlations with all the indices, since motorcycle owners receive such

high scores that the entire distribution is highly skewed (95% of all scores are below 8, whereas

motorcycle owners score above 50). The second shows correlations of .75 with the PCA index that

doesn’t weight livestock negatively — but correspondingly lower correlations with the others that

maintained that negative weighting.

The obvious implication of all of this is that the standard asset indices will tend to find higher

urban-rural contrasts in poverty than the uncentered PCA. This is shown clearly in Table 7. In

each case we have classified the bottom 40% of individuals as “poor” according to the DHS wealth

index, the PCA 2 index and the second uncentered PCA index. It is clear that there is a strong

urban-rural poverty gradient. Nevertheless the DHS wealth index accentuates this contrast, while

the uncentered PCA index finds more urban poverty and less rural poverty. This should not be

surprising given the negative valuation of rural assets in the DHS wealth index and the strong

positive valuations of urban infrastructure.

Interestingly calculating the Gini coefficient on the asset scores of the uncentered PCA we find

(in Table 8) strong asset inequality in South Africa in 1998, not dissimilar to the magnitude of

income inequality. Furthermore as that table also suggests, there were strong inequalities within

rural areas, a finding that many South Africans will find plausible.

8 Asset inequality in South Africa 1993-2008

We turn now to consider the evolution of asset inequality in South Africa using two nationally

representative surveys conducted under the auspices of SALDRU at the University of Cape Town.

The first of these is the Project for Statistics on Living Standards and Development (PSLSD)
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Figure 3:

conducted in 1993 and the second is the first wave of the National Income Dynamics Study (NIDS).

These studies have already been used to investigate changes in money-metric income inequality

over the period (Leibbrandt, Woolard, Finn and Argent 2010). It has been found that over this

period money-metric inequality started at very high levels and remained at those high levels.

Figure 3 below benchmarks these discussions by presenting a picture of money metric inequality

over the post-apartheid period by plotting 1993 and 2008 Lorenz curves of per capita income. It

can be seen that inequality certainly did not improve. The point estimates for the Gini coefficients

stayed at 0.69 over the period.

In order to look at asset inequality over time we need to calculate a pooled index for the two

periods first, so that we are using the same scores for the assets in each period. This limits us

to assets that were asked for in both periods. The descriptive statistics presented by Bhorat and

van der Westhuizen (2013) suggest that there has been considerable progress over the period. Table

9 present the statistics as calculated on our data.

One immediately evident issue is that the prevalence of landlines has gone down as the availabil-

ity of cell phones has become ubiquitous. If this measurement issue is not addressed it will result
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in a spurious decrease in assets over time. Indeed given the relative rarity of landlines in the later

period these would become erroneously marked as valuable assets instead of as assets whose utility

is actually in decline. Consequently we collapse landline and cell phone ownership into an omnibus

“any phone” variable. The coefficients on the assets implied by our uncentered PCA asset index

are given in Table 10.

When we use this asset index to construct Lorenz curves we get the result shown in Figure 4

below. The Lorenz curves show clear evidence that asset inequality fell considerably and this is

confirmed by the Gini coefficients which fell markedly from 0.47 in 1993 to 0.29 in 2008. As a

reflection of the fact that these Lorenz curves and Gini coefficients were estimated from the pooled

UCPC measure, the pooled or Population Lorenz curve is plotted in the figure too.

Given South Africa’s history, there is a great fascination with how racial inequality has changed

in South Africa over the post-apartheid period. This interest has resulted in many between-group

versus within-group decompositions being run by race on South African survey data. It has not

been possible to do such decompositions on asset indices before. The UCPC index can support

such estimations. However, the UCPC can have zero values and, indeed, it does have such values
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in the South African case. Thus, the commonly used Theil entropy measures are not appropriate

for such decompositions. In Table 11 below we use a decomposition of the Gini coefficient by racial

group. As explained by Milanovic and Yitzhaki (2002), because of the overlap of Lorenz curves

across racial groups, the decomposition leaves a residual or overlap term. Again we compare per

capita income and the UCPC asset index for each year.

The aggregate Gini coefficients for UCPC and PCINC in 1993 and 2008 are the same as those

reported in the two Figures above. In each year these aggregate figures are constituted by a

combination of inequality with the racial groups and inequality across (between) the racial groups.

The income figures show a rising within-group contribution as the income inequality within each

racial group rises between 1993 and 2008. This is not true of the asset index as only the smaller

white and Asian groups have rising within-group inequality between 1993 and 2008. Nevertheless

the between group inequality in assets has declined so sharply that the within-group inequality

becomes a larger portion of overall inequality.

The fact that asset inequality should have declined is not surprising given that the statistics

shown in Table 9 show strong increases in access to assets between 1993 and 2008. This is not

universally true - motor cars, for instance, remain relatively rare. Nevertheless the penetration

of television, cell phones, refrigerators and electricity suggest that asset holdings have certainly

increased. By contrast the money-metric measures suggest very little change. Part of the problem,

of course, is that if the whole distribution shifts upwards by an equiproportionate amount measured

inequality will remain static. Note, however, that dummy variables cannot be rescaled in this way.

As everyone becomes better off asset holdings will increase across the board. In the way that we

measure inequality through assets this will make all assets more common and will thus reduce

asset inequality. The coarser asset inequality measure therefore allows us to see progress which is

obscured by the more continuous measure.

It is also true, of course, that all measurements are contingent on the schedules that are em-

ployed. One note of caution in this regard is appropriate. The asset inequality measure for 1998

that we calculated for the DHS is significantly higher than either the 1993 or 2008 measures we have

just considered. The main reason for this is that the asset schedule for 1998 included assets such

as “personal computer” which allowed a better contrast to be drawn between high earners and the

rest5. While we are sure that access to assets has spread and that in this sense asset inequality has

decreased, the magnitude of the intial level of inequality and the size of the decrease are probably

not as dramatic as suggested by the Gini coefficients that we have reported.

9 Conclusion

In this paper we have argued that asset indices can be interesting and powerful tools for analysing

social trends. However doing so in an unreflective and automatic way is unlikely to provide useful

insights. Some of the ways in which asset indices have been produced thus far, for instance, has

obscured real asset holdings in rural areas in at least the South African case. Arguably this has led

to an exaggerated sense of rural deprivation and a lack of appreciation for poverty in urban areas.

It may also have obscured real inequality within rural areas. Our analysis has also suggested that

it is possible to create asset indices in ways that allow the calculation of Gini coefficients. To that

end we have used the methodology suggested by Banerjee for the calculation of “multidimensional

Gini coefficients” using continuous data. Our application suggests that the technique can work well,

5Of course the case of the motor cycle should remind us that some of these contrasts can be overdrawn.
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provided that care is taken in ensuring that some rare assets don’t distort the index. In general we

believe that such indices should not be used without scrutinising the implied coefficients.

More substantively our empirical work suggests that the money-metric approach to inequality

measurement in South Africa may have obscured the real progress made in large portions of the

population — mainly because the rich have progressed also. The issue of how to think about the

place of the rich (and super-rich) in the new South Africa is, of course, highly interesting. But this

should not detract from the perspective offered by our asset indices.

A Derivations

A.1 The PCA index in the case of two binary variables

With the standard PCA procedure, the variables are demeaned and divided by the standard devi-

ation. Let the resultant data matrix of standardised variables be eX, i.e.

eX=
⎡⎢⎢⎢⎢⎢⎢⎢⎣
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Then the correlation matrix is given by:
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where sgn () is 1 or −1 depending on the sign of 6 . The following table reports the resulting asset
index values.
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A.2 The Gini coefficient for the bivariate case

We make the following assumptions: The bundles (0 0), (1 0), (0 1) and (1 1) have index values

0, 1, 2 and 1 + 2 respectively with 0 ≤ 1 ≤ 2. Furthermore the values are normed so that

6When  = 0 sgn () = 0. In this case there are two equally appropriate eigenvectors, i.e.

0 1


and


1 0


respectively. Note that −v would obviously also be a normalised eigenvector. We’ll pick the sign of v so that the
value at 1 = 1 and 2 = 1 is positive.
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Figure 5: Calculating the Gini coefficient in the bivariate case, where  (0 0) = 0.

11+22 = 1. Consequently the shares accruing to individuals having asset bundles (0 0), (1 0),

(0 1) and (1 1) are, respectively, 0 (1 − 12)1, (2 − 12)2 and 12 (1 + 2). Fig 5 depicts the

Lorenz curve for this situation.

Now twice the area between the Lorenz curve and the 45◦ line is equal to the area of the unit
square minus twice the area under the Lorenz curve. The area under the Lorenz curve consists

of the three more darkly shaded triangles plus the two rectangular areas shaded in dark in Figure

5. Doubling the triangular areas will result in the removal of the lightly shaded triangles as well.

Consequently the Gini coefficient will be the area of the unshaded rectangles minus the area of the

darkly shaded rectangles. It follows that

 = (1− 1 − 2 + 12) (1 − 12)1 + (1− 2) (2 − 12)2 +

(1− 12) (12) (1 + 2)− 2 (1 − 12)1 − 12 (2 − 12)2
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Taking note of the fact that 22 = 1− 11 and simplifying we get the result that

 = 1− 2 − (1 + 2 − 212) (1 − 12)1 − 12 (1 − 2)1
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Table 3: Constructing Asset indices using the 1998 Demographic and Health Survey for South Africa
(1) (2) (3) (4) (5) (6) (7)

VARIABLES DHS WI UC PCA UC PCA2 PCA PCA2 MCA FA

water in house 0.252*** 0.209 0.565 0.708 0.707 0.329 0.289
(0.00233)

electricity 0.180*** 0.0814 0.220 0.663 0.657 0.300 0.265
(0.000838)

radio 0.0978*** 0.0515 0.140 0.467 0.477 0.206 0.113
(0.000649)

television 0.160*** 0.101 0.273 0.678 0.680 0.312 0.301
(0.000696)

refrigerator 0.179*** 0.136 0.369 0.735 0.738 0.343 0.413
(0.000778)

bicycle 0.0923*** 0.600 1.401 0.490 0.501 0.233 0.137
(0.000703)

m.cycle 0.169*** 52.57 0.788 0.821 0.412 0.193
(0.00190)

car 0.175*** 0.490 1.202 0.766 0.777 0.368 0.320
(0.000795)

rooms 0.0102*** 0.0176 0.0482 0.0977 0.105 CAT 0.0221
(0.00199)

telephone 0.196*** 0.378 0.989 0.813 0.818 0.387 0.397
(0.000831)

PC 0.210*** 4.984 14.42 0.967 0.982 0.481 0.296
(0.00125)

washing machine 0.203*** 0.654 1.696 0.870 0.877 0.421 0.452
(0.000920)

donkey/horse -0.0880*** 2.836 4.523 -0.293 -0.118 -0.0849
(0.00143)

sheep/cattle -0.118*** 0.291 0.509 -0.375 -0.156 -0.0909
(0.000868)

Infrastructure vars Y
Constant Y N Y Y Y Y Y
Observations 11,666 12,136 12,136 12,136 12,136 12,136 12,136
R-squared 0.999 1.000 1.000 1.000 1.000 1.000 1.000
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1



Table 4: Means of the asset variables used in the South African DHS

Robust
Mean Std. Err. [95% Conf. Interval]

water in house 0.391 0.015 0.361 0.421
electricity 0.652 0.017 0.620 0.685
radio 0.803 0.006 0.791 0.815
television 0.578 0.012 0.554 0.603
refrigerator 0.507 0.014 0.481 0.534
bicycle 0.170 0.006 0.158 0.182
m.cycle 0.019 0.002 0.015 0.022
car 0.252 0.011 0.232 0.273
rooms 2.213 0.021 2.173 2.253
telephone 0.282 0.012 0.258 0.306
PC 0.064 0.005 0.053 0.074
washing machine 0.214 0.012 0.191 0.237
donkey/horse 0.024 0.003 0.019 0.029
sheep/cattle 0.100 0.007 0.087 0.114

Mean estimation                     Number of obs    =   12136
                 (Std. Err. adjusted for 966 clusters in hv001)

Estimates are weighted to the population using the sample weights



Table 5: Comparing the quantiles of the uncentered vs the usual PCA

1 2 3 4 5 Total
1 2 368 482 0 0 0 2 850
2 530 1 145 748 0 0 2 423
3 34 429 1 277 586 0 2 326
4 0 66 275 1 463 399 2 203
5 175 104 55 84 1 912 2 330

Total 3 107 2 226 2 355 2 133 2 311 12 132

Quantiles of PCA 2Quantiles of 
UC PCA2



Table 6: Correlations between the different asset indices
DHS WI PCA PCA 2 MCA FA UC PCA UC PCA 2

DHS WI 1
PCA 0.9435 1
PCA 2 0.9337 0.9974 1
MCA 0.94 0.999 0.9973 1
FA 0.9449 0.9968 0.9952 0.9959 1
UC PCA 0.3059 0.3862 0.3995 0.3956 0.362 1
UC PCA 2 0.6247 0.7391 0.7559 0.747 0.7234 0.4539 1



Linearized
Mean Std. Err.

DHS
capital, large city 0.098 0.013 0.072 0.123
small city 0.178 0.024 0.131 0.225
town 0.204 0.031 0.142 0.265
countryside 0.720 0.020 0.681 0.759

PCA 2
capital, large city 0.146 0.014 0.119 0.173
small city 0.220 0.021 0.179 0.261
town 0.291 0.032 0.229 0.353
countryside 0.648 0.019 0.610 0.686

UC PCA 2
capital, large city 0.198 0.015 0.169 0.227
small city 0.275 0.022 0.232 0.317
town 0.372 0.033 0.308 0.437
countryside 0.597 0.016 0.566 0.628

Table 7: Proportion poor in different types of localities, according to 
different asset indices

[95% Conf. Interval]



Table 8: Asset inequality measured by the Gini coefficient using the U   
Group Estimate STE LB UB
1: capital, large city 0.566 0.009 0.549 0.583
2: small city 0.538 0.014 0.511 0.566
3: town 0.569 0.023 0.524 0.614
4: countryside 0.609 0.014 0.582 0.636
Population 0.623 0.007 0.610 0.636
Statistics calculated using the DASP package



Table 9: Asset holdings in 1993 and 2008 - individuals wit  
Linearized

Over Mean Std. Err.
electricity

1993 0.459 0.024 0.411 0.507
2008 0.779 0.020 0.740 0.818

pipedwater
1993 0.506 0.027 0.454 0.559
2008 0.697 0.025 0.648 0.746

radio
1993 0.811 0.008 0.796 0.826
2008 0.694 0.012 0.672 0.717

TV
1993 0.477 0.018 0.441 0.512
2008 0.703 0.017 0.671 0.736

fridge
1993 0.399 0.020 0.360 0.438
2008 0.609 0.020 0.569 0.648

motor
1993 0.247 0.016 0.215 0.279
2008 0.220 0.018 0.184 0.256

livestock
1993 0.110 0.011 0.089 0.132
2008 0.100 0.011 0.078 0.122

landline
1993 0.242 0.018 0.206 0.278
2008 0.143 0.015 0.114 0.172

cellphone
2008 0.807 0.011 0.786 0.828

phoneany
1993 0.242 0.018 0.206 0.278
2008 0.827 0.010 0.808 0.847

[95% Conf. Interval]



Table 10: Coefficients on the asset variables used in the pooled UC PCA index
electricity 0.515
pipedwater 0.536
radio 0.353
TV 0.655
phoneany 0.789
fridge 0.800
motor 2.265
livestock 3.170



Table 11: Decomposing Inequality in 1993 and 2008

Gini 
index

Populatio
n share

Income 
share

Absolute 
contribut

ion

Relative 
contribut

ion

Gini 
index

Populatio
n share

Income 
share

Absolute 
contribut

ion

Relative 
contribut

ion

African 0.51 0.77 0.56 0.22 0.47 0.55 0.78 0.34 0.15 0.21

Coloured 0.29 0.08 0.11 0.00 0.01 0.44 0.08 0.07 0.00 0.00

Indian 0.12 0.02 0.05 0.00 0.00 0.46 0.02 0.04 0.00 0.00

White 0.05 0.12 0.28 0.00 0.00 0.44 0.12 0.55 0.03 0.04

Within . . . 0.22 0.47 . . . 0.18 0.26

Between . . . 0.21 0.45 . . . 0.47 0.68

Overlap . . . 0.04 0.08 . . . 0.05 0.07

Population 0.47 1.00 1.00 0.47 1.00 0.69 1.00 1.00 0.69 1.00

Gini 
index

Populatio
n share

Income 
share

Absolute 
contribut

ion

Relative 
contribut

ion

Gini 
index

Populatio
n share

Income 
share

Absolute 
contribut

ion

Relative 
contribut

ion

African 0.30 0.79 0.72 0.17 0.59 0.60 0.79 0.43 0.20 0.30

Coloured 0.22 0.09 0.10 0.00 0.01 0.52 0.09 0.09 0.00 0.01

Indian 0.11 0.03 0.04 0.00 0.00 0.58 0.03 0.07 0.00 0.00

White 0.09 0.09 0.14 0.00 0.00 0.47 0.09 0.41 0.02 0.03

Within . . . 0.17 0.60 . . . 0.23 0.33

Between . . . 0.09 0.29 . . . 0.42 0.61

Overlap . . . 0.03 0.11 . . . 0.04 0.06

Population 0.29 1.00 1.00 0.29 1.00 0.69 1.00 1.00 0.69 1.00

UC PCA 2008

UC PCA 1993 PC Income 1993

PC Income 2008



DataFirst is a data service dedicated to making South African and other African survey and 
administrative microdata available to researchers and policy analysts. 

We promote high quality research by providing the essential research infrastructure for 
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