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Abstract
We show that the pseudo empirical maximum likelihood estimator can be recast as a calibration estimator.

The process of estimating the probabilities pk of the distribution function can be done also in a maximum
entropy framework. We suggest that a minimum cross-entropy estimator has attractive theoretical properties.
A Monte Carlo simulation suggests that this estimator outperforms the PEMLE and the Horvitz-Thompson
estimator.
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Most statistical agencies calibrate their surveys to external benchmarks in order to increase the precision
of the estimates. A common approach is to minimise a distance measure between the design weights and the
calibrated weights while ensuring that the calibrated weights satisfy the benchmark requirements (Deville and
Särndal 1992, Deville, Särndal and Sautory 1993). Deville and Särndal (1992) have argued that such “calibration
estimators” are asymptotically equivalent to generalized regression estimators and that “numerical features of the
weights and ease of computation become more than anything else the bases for choosing between the estimators”
(p.376). A more theoretical approach to the choice of estimator is given by Chen and Sitter (1999). They argue
that their “pseudo empirical maximum likelihood estimator” (PEMLE) is not only attractive conceptually, but is
also likely to be efficient when compared to other alternatives. In this paper we will argue that the minimisation
of a cross-entropy criterion provides an alternative approach which is theoretically coherent and performs at least
as well as the PEMLE in a set of Monte Carlo simulations. Interestingly it provides theoretical justification for
iterative “raking ratio” adjustments. We show, furthermore, that it allows for easy generalisation to cases other
than dummy variables. In addition it allows for the straightforward incorporation of constraints at different levels,
such as households and individuals.

1 Calibration estimators
The theory of calibration estimators is developed in Deville and Särndal (1992). Let dk be the design-weight
associated with unit k, i.e. dk = 1

πk
where πk is the inclusion probability, i.e. πk = Pr (k ∈ s) where s is the

sample. A distance measure G between the weights dk and the “calibrated” weights wk has to satisfy the following
criteria:

1. G (wk, dk) ≥ 0; G is differentiable with respect to wk; strictly convex; and G (dk, dk) = 0

2. ∂G
∂wk

= g (wk, dk) is continuous and one-to-one.

The average distance between the vectors w and d will be estimated byX
dkG (wk, dk) (1)

We assume that we have auxiliary information about the population total of the vector of random variables xk
i.e.

P
k∈U xk = tx, where U is the universe. We want the calibrated weights to return this total. Consequently

the objective is:

min
w

X
k∈s

dkG (wk, dk) , s.t.
X
k∈s

wkxk = tx
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Deville and Särndal (1992) pick G so that it varies only with the ratio wk
dk
, i.e. G (wk, dk) ≡ G

³
wk
dk

´
. Forming

the Lagrangian for this problem, differentiating it and setting the derivative equal to zero we get

g

µ
wk
dk

¶
− x0kλ = 0

Letting F (·) = g−1 (·) we get the solution

wk = dkF (x
0
kλ) (2)

The Lagrange multipliers λ can be obtained by solving the “calibration equation”

tx =
X
k∈s

wkxk

tx =
X
k∈s

dkF (x
0
kλ)xk (3)

Different choices of G lead to different calibration estimators. Deville and Särndal (1992, p.378) list inter alia
some of the following possibilities:

Table 1: Examples of distance functions used for calibration
Case dkG (wk, dk) F (x0kλ)

1 Linear — Generalized regression estimator (wk − dk)2 /2dk 1 + x0kλ

2 Multiplicative wk log
³
wk
dk

´
− wk + dk exp (x0kλ)

3 “Minimum entropy distance” −dk log (wk/dk) + wk − dk (1− x0kλ)
−1

Note that Deville and Särndal’s function Gk is equivalen to dkG.
Our notation here is consistent with Deville et al. (1993)

Deville and Särndal (1992, p.378) note that the first choice can some times yield negative weights, which can
be problematic. The multiplicative model can yield extreme weights, which can be unpalatable to end users. The
third case, they suggest, need not always have a solution, although the probability of a solution will approach
one as n→∞. They prove that all these calibration estimators are asymptotically equivalent to the generalised
regression estimator, hence their claim that the choice of an estimator can be based on pragmatic grounds. To
that end they develop estimators that can restrict the range of the calibrated weights.

2 Pseudo Empirical Maximum Likelihood Estimation
A different approach is adopted by Chen and Sitter (1999).who suggest that a design-consistent estimate of the
population empirical likelihood function l (F ) is given by

bl (p) =X
k∈s

dk log (pk) (4)

Any finite population parameter θN of the finite population distribution function FN or superpopulation param-
eter θ can therefore be estimated in two steps. Firstly bl (p) is maximised to obtain bp subject to the constraintP
k∈s pk = 1. An estimate of the finite population distribution function is then given bybFN (x) =X

k∈s
bpkI[x≤xk] (5)

where I[·] is the indicator function. In the second step bθN is obtained as a function of bFN . For instance if
θN = EFN (x), i.e. the finite population mean, thenbθN =X

k∈s
bpkxk
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If we have auxiliary information about any of the finite population moments, e.g. E (x) = x, then we maximise
the sample empirical likelihood (equation 4) subject to the constraints

P
k∈s pkxk = x which can also be written

as X
k∈s

pk (xk − x) = 0 (6)

This problem can again be solved through Langrange multipliers. The solution is given by

pk = qk
¡
1 + λ0 (xk − x)

¢−1
(7)

where qk = dkP
dk
and λ solves the equations

X
k∈s

qk (xk − x)¡
1 + λ0 (xk − x)

¢ = 0 (8)

Comparing these solutions to equations 2 and 3 and the solution to case 3 of Table 1, it is evident that the
PEMLE is, in fact, equivalent to the “minimum entropy distance” calibration estimator of Deville and Särndal.
The only difference is that the estimator returns bpk rather than wk. This is simply a normalisation issue: with

wk = Nbpk (9)

we get a set of calibrated weights.
Let us add the constraint

P
k∈swk = N , which is equivalent to the constraint

P
k∈s pk = 1 and rewrite the

constraints tx =
P
k∈swkxk as

N−1tx =
X
k∈s

pkxk

The constraints in terms of totals are obviously equivalent to constraints in terms of means. It is easy to see now
that.the two approaches are mathematically identical, sinceXµ

−dk log
wk
dk
+ wk − dk

¶
=

X
−dk logwk +

X
dk log dk +N −

X
dk

=
X
−dk logNpk +

X
dk log dk +N −

X
dk

is minimised at precisely the same values as
P
dk log pk is maximised.

3 Minimum cross-entropy estimation
The innovative part of the PEMLE procedure is to view the process of calibration as a process of estimating the
underlying distribution function (in equation 5). Viewed in this way the process can be seen as trying to solve
an “ill-posed problem” (Golan, Judge and Miller 1996), i.e. one where the number of unknowns (pk) exceed the
information at hand (the number of constraints). Maximum entropy estimation is designed precisely for these
sort of cases. We would solve the problem

max
p

X
k∈s

pk log pk, s.t.
X
k∈s

pkxk = x and
X
k∈s

pk = 1 (10)

Comparing this to the PEMLE, we see that the objective function can be thought of as E (log pk) where the
expectation is taken with respect to the distribution F , while the empirical log-likelihood can be thought of as
N ·E (log pk) where the expectation is taken with respect to different possible samples.
The maximum entropy estimator ignores the sampling information contained in the design weights dk. An

alternative approach is to think of the design weights as providing a prior set of estimates qk = dkP
dk
of the

probabilities to be estimated. The problem is therefore to pick a probability vector p that is as close as possible
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to q while respecting the moment constraints. The approach to this problem is given by the “cross-entropy
formalism” (Golan et al. 1996, pp.29ff). This can be written as

min
p

X
k∈s

pk log
pk
qk
, s.t.

X
k∈s

pkxk = x and
X
k∈s

pk = 1 (11)

This problem yields the solution

bpk = qk exp³x0kbλ´ /Ω, Ω =
X
k∈s

qk exp
³
x0k
bλ´ (12)

As with the PEMLE, the minimum cross-entropy estimator (MCEE) can yield raising weights by simply multi-
plying the probabilities by N , as in equation 1. In this case the MCEE turns out to be mathematically equivalent
to Deville and Särndal’s second case, the multiplicative calibration estimator1. Asymptotically they are therefore
equivalent to each other and equivalent to the generalized regression estimator.
There are nevertheless some attractive features of the minimum cross-entropy approach which are not shared

by the other approaches. Firstly, the MCEE is based on trying to minimise the additional information required in
moving from the prior distribution to the distribution p. High information in this context means that there are
only a few states of the world which satisfy the constraints. Minimising this additional information is therefore
equivalent to picking a distribution which can give rise to the observed information (the finite population means
x) with higher probability than alternative ones. The MCEE therefore has a theoretical rationale which some of
the ad-hoc calibration estimators considered by Deville and Särndal do not.
Secondly, the cross-entropy criterion obeys the law of composition (the importance of this in the maximum

entropy context is stressed by Jaynes 1957). Let I (p;q) be the cross-entropy measure, i.e.

I (p1, p2, . . . , pn;q1, q2, . . . , qn) =
nX
k=1

pk log
pk
qk

(13)

Now assume that the data was collected in two stages: households and individuals within households. Let pih
be the probability that individual i in household h was sampled, p·h =

P
i pih is the probability of observing

household h and pi|h = pih/p·h is the probability of observing individual i, given that household h was sampled.
Similarly we define q·h and qi|h. The cross-entropy measure satisfies the following relationship:

I (p11, . . . , phnn;q11, . . . , qhnn;) = I (p·1, . . . , p·n; q·1, . . . , q·n) + p·1I
¡
p1|1, . . . , ph1|1; q1|1 . . . , qh1|1

¢
(14)

+p·2I
¡
p1|2, . . . , ph2|2; q1|2 . . . , qh2|2

¢
+ · · ·+ p·nI

¡
p1|n, . . . , phn|n; q1n . . . , qhn|n

¢
In many cases it makes sense to assume that the conditional probabilities pi|h and qi|h are equal. For instance
if all household members are enumerated if the household is selected we have pi|j = qi|j =

1
hj
. In these cases

I
¡
p1|j , . . . , phj |j ; q1|j . . . , qhj |j

¢
= 0. Consequently

I (p11, . . . , phnn;q11, . . . , qhnn;) = I (p·1, . . . , p·n; q·1, . . . , q·n)

Furthermore the constraint
P

k∈s pkxk = x can now be rewritten asX
h

X
i

pihxih =
X
h

X
i

p·hpi|hxih

=
X
h

p·h
X
i

qi|hxih

=
X
h

p·hxh

1Merz and Stolze (2008) calibrate data using a “Minimum Information Loss” criterion. Their approach is identical to that of the
MCEE except that they do not interpret it as estimating probabilities. They merely wish to minimise the distance between wk and
dk. They do not seem to see that this is equivalent to the calibration estimator.
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where xh is the estimated mean of x within household h. Consequently minimising the cross-entropy across
individuals in terms of equation 11 while imposing the condition pi|h = qi|h is equivalent to the problem:

min
p·

X
h∈s

p·h log
p·h
q·h
, s.t.

X
h∈s

p·hxh = x and
X
h∈s

p·h = 1

which is a household level minimum cross-entropy problem. We can therefore incorporate constraints about the
intra-household relative weights in a straightforward manner.

4 Comparing the PEMLE and MCEE: a Monte Carlo experiment
Both the PEMLE and MCEE are guaranteed to produce positive weights. They both have cogent theoretical
rationales and they are asymptotically equal to the generalized regression estimator and thus to each other. The
MCEE has the advantage that it is designed specifically for the first stage estimation problem, i.e. to recover the
probabilities pk which allow us to estimate the distribution function FN . Secondly it obeys the composition law,
so that we might expect it to perform better in estimating conditional probabilities or in incorporating constraints
at different levels.
Nevertheless it is unclear on purely theoretical grounds how these estimators might perform in finite samples.

In order to investigate this matter, we ran a Monte Carlo experiment as follows: We constructed 200 “censuses”
of 5000 observations each. In each census there were two “strata”. Units were randomly allocated to the strata
according to whether a pseudorandom number was larger than 0.65 + u where u was a draw from the uniform
distribution with support (−0.2, 0.2), fixed for each census. Each census therefore had a different balance between
the strata. Within each of the strata a random log-normal “income” variable x was generated. In the smaller
stratum the distribution was LN (8 + μ, 1) where μ ∈ (0, 0.4), fixed for each census, while in the larger stratum
the distribution was LN (7 + μ, 1). This income variable was, in turn, coded into 11 income bands.
Once each census had been fixed in these ways, 200 stratified random samples without replacement were

extracted from each census, a sample of size 50 from the high income stratum (s = 1) and a sample of size 50
from the low income stratum (s = 0). Given the known stratum sizes, the standard Horvitz and Thompson
(1952) weights could be calculated and these in turn were fed as prior weights dk to the PEMLE and MCEE.
We also calibrated the PEMLE and MCEE to the census stratum sizes and the census mean income. Within
each census we could estimate the bias and mean square error resulting from the weights in the calculation of
various statistics. In particular we focussed on the conditional mean of income within each stratum plus the
estimated proportions in each income band. The latter exercise was designed to test how accurately the PEMLE
and MCEE were able to estimate a crude approximation to the distribution function FN . In all cases we compared
the estimated statistic bθN to the finite population statistic θN calculated over the census.
The performance of the estimators across the 200 censuses is given in Table 2. In the first three columns we

report the average bias of the estimators. With the exception of the MCEE’s bias on the top income bracketbpb=11 none of these bias estimates is significantly different from zero at the 95% level, i.e. if the bias estimates
from the 200 censuses are ranked from the most negative to the most positive, then zero is inside the interval
defined by the range from the 5th value to the 195th one.
The next three columns report the average mean square error of the estimators and the last two columns report

a nonparametric 95% confidence interval for the difference between bθMCEE and bθPEMLE. This is calculated from

MSE
³bθMCEE

´
−MSE

³bθPEMLE

´
where this difference is calculated across the same 200 samples for a given

census. For instance the first row shows that across all 200 censuses the MCEE had on average a smaller mean
square error than the PEMLE. The nonparametric confidence interval shows that in over 195 of the censuses the
gap in the MSE ranged from -89793.3 to -145.3. This is reasonable evidence that the MCEE is more accurate in
estimating the conditional mean than the PEMLE is. Indeed the table shows that the MCEE is more accurate on
average in the calculation of most of the statistics and where it is not the difference is not statistically significant.
By contrast for many of the statistics the MCEE outperforms the PEMLE in at least 95% of the censuses.
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Table 2: Performance of different weights in a Monte Carlo experiment
Bias MSE 95% CI for difference

HT MCEE PEMLE HT MCEE PEMLE 5th 195th
E(x|s = 1) 7.673 24.902 41.481 1216396.0 522448.9 539981.0 -89793.3 -145.3
E(x|s = 0) -1.239 -0.432 -7.456 163761.6 109629.7 112520.0 -9181.3 -179.6bpb=1 0.000006 -0.000035 -0.000009 0.000044 0.000043 0.000044 -0.000002 0.000000bpb=2 0.000113 -0.000090 0.000033 0.000215 0.000210 0.000213 -0.000007 -0.000001bpb=3 0.000225 -0.000466 -0.000048 0.000697 0.000672 0.000679 -0.000017 -0.000001bpb=4 -0.000305 -0.001743 -0.000877 0.001446 0.001385 0.001393 -0.000025 0.000008bpb=5 0.000069 -0.001693 -0.000740 0.001994 0.001910 0.001915 -0.000030 0.000016bpb=6 -0.000204 -0.000904 -0.000834 0.002013 0.001995 0.001993 -0.000013 0.000027bpb=7 0.000149 0.001476 0.000144 0.001499 0.001528 0.001495 -0.000002 0.000072bpb=8 -0.000152 0.002529 0.000958 0.000776 0.000800 0.000771 -0.000012 0.000106bpb=9 0.000027 0.001696 0.001761 0.000286 0.000256 0.000269 -0.000034 -0.000002bpb=10 0.000039 -0.000241 0.000066 0.000070 0.000059 0.000064 -0.000012 -0.000002bpb=11 0.000033 -0.000527 -0.000454 0.000013 0.000007 0.000008 -0.000001 0.000000
HT - Horvitz Thompson, PEMLE - pseudo-empirical maximum likelihood estimator
MCEE - minimum cross-entropy estimator. Bias = bθN − θN , MSE=(bθN − θN )

2

Results based on 200 "Censuses" of 5000 observations each, from each of which 200 stratified random
samples of size 100 were extracted

5 Conclusion
The MCEE is attractive for theoretical reasons and it seems to work well in finite samples, at least for the
case considered by our Monte Carlo experiment. This raises the question why this “multiplicative” calibration
estimator is not used more frequently by statistical agencies. The reason is probably due to the fact that it can
generate extreme weights, as emphasized by Deville and Särndal (1992, p.378). Equation 12 shows that bpk will
be large relative to qk only if x0kλ is large. A large Lagrange multiplier implies that that particular constraint is
very informative, i.e. it reduces radically the uncertainty about the underlying probability distribution. As such
it should be seen not as a problem with the technique but a problem deriving from imposing constraints on the
sample that it is ill-equipped to deal with. Disguising this problem by limiting the acceptable range of weights
does not improve the quality of the information derived from the use of such calibrated weights.
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DataFirst is a research unit at the University of Cape Town engaged in promoting the long term preservation 
and reuse of data from African Socioeconomic surveys.  This includes:

•  the development and use of appropriate software for data curation to support the use of data for purposes    
   beyond those of initial survey projects
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•  research to improve the quality of African survey data

•  training of African data managers for better data curation on the continent
•  training of data users to advance quantitative skills in the region.
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